亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a Bispectral index score prediction model based on an interpretable deep learning algorithm

可解释性 计算机科学 人工智能 接收机工作特性 脑电图 二元分类 机器学习 任务(项目管理) 回归 模式识别(心理学) 数据挖掘 统计 支持向量机 数学 管理 经济 精神科 心理学
作者
Eugene Hwang,Hee‐Sun Park,Hyun-Seok Kim,Jin-Young Kim,Hanseok Jeong,Junetae Kim,Sung Hoon Kim
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:143: 102569-102569 被引量:8
标识
DOI:10.1016/j.artmed.2023.102569
摘要

Proper maintenance of hypnosis is crucial for ensuring the safety of patients undergoing surgery. Accordingly, indicators, such as the Bispectral index (BIS), have been developed to monitor hypnotic levels. However, the black-box nature of the algorithm coupled with the hardware makes it challenging to understand the underlying mechanisms of the algorithms and integrate them with other monitoring systems, thereby limiting their use.We propose an interpretable deep learning model that forecasts BIS values 25 s in advance using 30 s electroencephalogram (EEG) data.The proposed model utilized EEG data as a predictor, which is then decomposed into amplitude and phase components using fast Fourier Transform. An attention mechanism was applied to interpret the importance of these components in predicting BIS. The predictability of the model was evaluated on both regression and binary classification tasks, where the former involved predicting a continuous BIS value, and the latter involved classifying a dichotomous status at a BIS value of 60. To evaluate the interpretability of the model, we analyzed the attention values expressed in the amplitude and phase components according to five ranges of BIS values. The proposed model was trained and evaluated using datasets collected from two separate medical institutions.The proposed model achieved excellent performance on both the internal and external validation datasets. The model achieved a root-mean-square error of 6.614 for the regression task, and an area under the receiver operating characteristic curve of 0.937 for the binary classification task. Interpretability analysis provided insight into the relationship between EEG frequency components and BIS values. Specifically, the attention mechanism revealed that higher BIS values were associated with increased amplitude attention values in high-frequency bands and increased phase attention values in various frequency bands. This finding is expected to facilitate a more profound understanding of the BIS prediction mechanism, thereby contributing to the advancement of anesthesia technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助Yan1961采纳,获得10
刚刚
欣喜宛亦完成签到 ,获得积分10
1秒前
FashionBoy应助dllneu采纳,获得10
2秒前
科研通AI2S应助宋佳珍采纳,获得10
5秒前
8秒前
11秒前
13秒前
Yan1961发布了新的文献求助10
14秒前
明亮的代灵完成签到 ,获得积分10
15秒前
雨下听风发布了新的文献求助10
18秒前
乐乐应助Yan1961采纳,获得10
20秒前
25秒前
31秒前
38秒前
40秒前
hjy发布了新的文献求助10
44秒前
Yan1961发布了新的文献求助10
47秒前
谢花花完成签到 ,获得积分10
50秒前
59秒前
李爱国应助雨下听风采纳,获得10
1分钟前
传奇3应助谦让的思枫采纳,获得10
1分钟前
HUO完成签到 ,获得积分10
1分钟前
zs完成签到 ,获得积分10
1分钟前
1分钟前
追寻元菱应助科研通管家采纳,获得10
1分钟前
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
追寻元菱应助科研通管家采纳,获得10
1分钟前
Gideon完成签到,获得积分10
1分钟前
HZY发布了新的文献求助10
1分钟前
科研通AI6应助窝恁叠采纳,获得10
1分钟前
TIDUS完成签到,获得积分10
1分钟前
1分钟前
微笑发布了新的文献求助10
1分钟前
笨笨曲奇发布了新的文献求助10
1分钟前
TIDUS完成签到,获得积分10
1分钟前
领导范儿应助HZY采纳,获得10
1分钟前
1分钟前
1分钟前
王皮皮完成签到 ,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232369
求助须知:如何正确求助?哪些是违规求助? 4401711
关于积分的说明 13699246
捐赠科研通 4268071
什么是DOI,文献DOI怎么找? 2342269
邀请新用户注册赠送积分活动 1339354
关于科研通互助平台的介绍 1295951