Development of a Bispectral index score prediction model based on an interpretable deep learning algorithm

可解释性 计算机科学 人工智能 接收机工作特性 脑电图 二元分类 机器学习 任务(项目管理) 回归 模式识别(心理学) 数据挖掘 统计 支持向量机 数学 管理 经济 精神科 心理学
作者
Eugene Hwang,Hee‐Sun Park,Hyun-Seok Kim,Jin-Young Kim,Hanseok Jeong,Junetae Kim,Sung Hoon Kim
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:143: 102569-102569 被引量:8
标识
DOI:10.1016/j.artmed.2023.102569
摘要

Proper maintenance of hypnosis is crucial for ensuring the safety of patients undergoing surgery. Accordingly, indicators, such as the Bispectral index (BIS), have been developed to monitor hypnotic levels. However, the black-box nature of the algorithm coupled with the hardware makes it challenging to understand the underlying mechanisms of the algorithms and integrate them with other monitoring systems, thereby limiting their use.We propose an interpretable deep learning model that forecasts BIS values 25 s in advance using 30 s electroencephalogram (EEG) data.The proposed model utilized EEG data as a predictor, which is then decomposed into amplitude and phase components using fast Fourier Transform. An attention mechanism was applied to interpret the importance of these components in predicting BIS. The predictability of the model was evaluated on both regression and binary classification tasks, where the former involved predicting a continuous BIS value, and the latter involved classifying a dichotomous status at a BIS value of 60. To evaluate the interpretability of the model, we analyzed the attention values expressed in the amplitude and phase components according to five ranges of BIS values. The proposed model was trained and evaluated using datasets collected from two separate medical institutions.The proposed model achieved excellent performance on both the internal and external validation datasets. The model achieved a root-mean-square error of 6.614 for the regression task, and an area under the receiver operating characteristic curve of 0.937 for the binary classification task. Interpretability analysis provided insight into the relationship between EEG frequency components and BIS values. Specifically, the attention mechanism revealed that higher BIS values were associated with increased amplitude attention values in high-frequency bands and increased phase attention values in various frequency bands. This finding is expected to facilitate a more profound understanding of the BIS prediction mechanism, thereby contributing to the advancement of anesthesia technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KIKIKI发布了新的文献求助10
1秒前
世界末末日完成签到 ,获得积分10
2秒前
酷波er应助优秀的枕头采纳,获得10
2秒前
品品发布了新的文献求助10
4秒前
5秒前
5秒前
隐形的乐瑶完成签到,获得积分10
6秒前
佛山婆婆完成签到 ,获得积分10
7秒前
7秒前
9秒前
李健应助给好评采纳,获得10
11秒前
peanut发布了新的文献求助30
11秒前
11秒前
刘智山完成签到 ,获得积分10
11秒前
温十一完成签到,获得积分10
11秒前
kk发布了新的文献求助10
12秒前
ywb发布了新的文献求助10
12秒前
12秒前
品品完成签到,获得积分10
13秒前
13秒前
14秒前
小于完成签到,获得积分10
15秒前
15秒前
小马甲应助Young采纳,获得10
17秒前
17秒前
18秒前
兴奋访旋关注了科研通微信公众号
18秒前
杨柳依依发布了新的文献求助10
18秒前
苹果天真完成签到,获得积分10
18秒前
griffon完成签到,获得积分10
19秒前
给好评完成签到,获得积分20
19秒前
kingkong发布了新的文献求助10
20秒前
给好评发布了新的文献求助10
21秒前
he完成签到,获得积分10
23秒前
专注涵雁发布了新的文献求助10
23秒前
李健应助小巧谷波采纳,获得10
25秒前
Owen应助杨柳依依采纳,获得10
26秒前
贰鸟应助给好评采纳,获得10
26秒前
在水一方应助沧笙踏歌采纳,获得10
26秒前
小胖熊完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141