已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exposing the grey wolf, moth‐flame, whale, firefly, bat, and antlion algorithms: six misleading optimization techniques inspired by bestial metaphors

萤火虫算法 元启发式 计算机科学 新颖性 隐喻 粒子群优化 并行元启发式 萤火虫协议 算法 人工智能 Bat算法 优化算法 数学优化 数学 元优化 动物 哲学 语言学 神学 生物
作者
Christian Leonardo Camacho-Villalón,Marco Dorigo,Thomas Stützle
出处
期刊:International Transactions in Operational Research [Wiley]
卷期号:30 (6): 2945-2971 被引量:30
标识
DOI:10.1111/itor.13176
摘要

Abstract We present a rigorous, component‐based analysis of six widespread metaphor‐based algorithms for tackling continuous optimization problems. In addition to deconstructing the six algorithms into their components and relating them with equivalent components proposed in well‐established techniques, such as particle swarm optimization and evolutionary algorithms , we analyze the use of the metaphors that inspired these algorithms to understand whether their usage has brought any novel and useful concepts to the field of metaheuristics. Our result is that the ideas proposed in the six studied algorithms have been in the literature of metaheuristics for years and that the only novelty in these self‐proclaimed novel algorithms is six different terminologies derived from the use of new metaphors. We discuss the reasons why the metaphors that inspired these algorithms are misleading and ultimately useless as a source of inspiration to design effective optimization tools. Finally, we discuss the rationale often presented by the authors of metaphor‐based algorithms as their motivation to propose more algorithms of this type, which is based on a wrong understanding of the no‐free‐lunch theorems for optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抹茶芝士酸奶完成签到,获得积分20
1秒前
zz发布了新的文献求助30
1秒前
1秒前
2秒前
2秒前
专注的远山完成签到,获得积分10
3秒前
Darliza完成签到 ,获得积分10
4秒前
5秒前
李朝朝发布了新的文献求助10
6秒前
Lucas应助Bravetwq采纳,获得10
7秒前
8秒前
zhixin完成签到,获得积分10
8秒前
9秒前
10秒前
研友_Z1egAZ发布了新的文献求助10
10秒前
小五完成签到 ,获得积分10
13秒前
14秒前
无辜叫兽发布了新的文献求助10
15秒前
温暖白容完成签到,获得积分10
15秒前
无花果应助碧蓝醉蝶采纳,获得10
16秒前
活泼冬天发布了新的文献求助10
16秒前
李健的粉丝团团长应助zl采纳,获得10
17秒前
18秒前
19秒前
20秒前
21秒前
爆米花应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
wanci应助科研通管家采纳,获得10
22秒前
23秒前
chuiniu关注了科研通微信公众号
23秒前
负责冰凡发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968054
求助须知:如何正确求助?哪些是违规求助? 3513070
关于积分的说明 11166367
捐赠科研通 3248263
什么是DOI,文献DOI怎么找? 1794174
邀请新用户注册赠送积分活动 874892
科研通“疑难数据库(出版商)”最低求助积分说明 804629