转化(遗传学)
环境化学
持久性(不连续性)
有机磷
人类健康
化学
健康风险评估
环境科学
环境卫生
杀虫剂
生态学
生物
生物化学
医学
岩土工程
工程类
基因
作者
Jia-Yong Lao,Huiju Lin,Xian Qin,Yuefei Ruan,Kmy Leung,Eddy Y. Zeng,Paul K.S. Lam
标识
DOI:10.1021/acs.est.2c01161
摘要
Transformation of organophosphate esters (OPEs) in natural ambient air and potential health risks from coexposure to OPEs and their transformation products are largely unclear. Therefore, a novel framework combining field-based investigation, in silico prediction, and target and suspect screening was employed to understand atmospheric persistence and health impacts of OPEs. Alkyl-OPE transformation products ubiquitously occurred in urban ambient air. The transformation ratios of tris(2-butoxyethyl) phosphate were size-dependent, implying that transformation processes may be affected by particle size. Transformation products of chlorinated- and aryl-OPEs were not detected in atmospheric particles, and atmospheric dry deposition might significantly contribute to their removal. Although inhalation risk of coexposure to OPEs and transformation products in urban ambient air was low, health risks related to OPEs may be underestimated as constrained by the identification of plausible transformation products and their toxicity testing in vitro or in vivo at current stage. The present study highlights the significant impact of particle size on the atmospheric persistence of OPEs and suggests that health risk assessments should be conducted with concurrent consideration of both parental compounds and transformation products of OPEs, in view of the nonnegligible abundances of transformation products in the air and their potential toxicity in silico.
科研通智能强力驱动
Strongly Powered by AbleSci AI