计算机科学
分割
点云
水准点(测量)
特征(语言学)
人工智能
情态动词
激光雷达
范畴变量
模式识别(心理学)
机器学习
遥感
地图学
地理
语言学
哲学
化学
高分子化学
作者
Yameng Wang,Yi Wan,Yongjun Zhang,Bin Zhang,Zhi Gao
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing
日期:2023-08-01
卷期号:202: 385-404
被引量:1
标识
DOI:10.1016/j.isprsjprs.2023.06.014
摘要
Despite the good results that have been achieved in unimodal segmentation, the inherent limitations of individual data increase the difficulty of achieving breakthroughs in performance. For that reason, multi-modal learning is increasingly being explored within the field of remote sensing. The present multi-modal methods usually map high-dimensional features to low-dimensional spaces as a preprocess before feature extraction to address the nonnegligible domain gap, which inevitably leads to information loss. To address this issue, in this paper we present our novel Imbalance Knowledge-Driven Multi-modal Network (IKD-Net) to extract features from multi-modal heterogeneous data of aerial images and LiDAR directly. IKD-Net is capable of mining imbalance information across modalities while utilizing a strong modal to drive the feature map refinement of the weaker ones in the global and categorical perspectives by way of two sophisticated plug-and-play modules: the Global Knowledge-Guided (GKG) and Class Knowledge-Guided (CKG) gated modules. The whole network then is optimized using a joint loss function. While we were developing IKD-Net, we also established a new dataset called the National Agriculture Imagery Program and 3D Elevation Program Combined dataset in California (N3C-California), which provides a particular benchmark for multi-modal joint segmentation tasks. In our experiments, IKD-Net outperformed the benchmarks and state-of-the-art methods both in the N3C-California and the small-scale ISPRS Vaihingen dataset. IKD-Net has been ranked first on the real-time leaderboard for the GRSS DFC 2018 challenge evaluation until this paper’s submission. Our code and N3C-California dataset are available at https://github.com/wymqqq/IKDNet-pytorch.
科研通智能强力驱动
Strongly Powered by AbleSci AI