Progressive convolutional transformer for image restoration

计算机科学 编码器 卷积神经网络 图像复原 变压器 人工智能 瓶颈 修补 图像(数学) 图像处理 嵌入式系统 物理 量子力学 电压 操作系统
作者
Yecong Wan,Mingwen Shao,Yuanshuo Cheng,Deyu Meng,Wangmeng Zuo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:125: 106755-106755 被引量:7
标识
DOI:10.1016/j.engappai.2023.106755
摘要

In the past few years, convolutional neural networks (CNNs) have become the primary workhorse for image restoration tasks. However, the deficiency of modeling long-range dependencies due to the local computational property of convolution greatly limits the restoration performance. To overcome this limitation, we propose a novel multi-stage progressive convolutional Transformer to recursively restore the degraded images, termed PCformer, which enjoys a high capability for capturing local context and global dependencies with friendly computational cost. Specifically, each stage of PCformer is an asymmetric encoder–decoder network whose bottleneck is built upon a tailored Transformer block with convolution operation deployed to avoid any loss of local context. Both encoder and decoder are convolution-based modules, thus allowing to explore rich contextualized information for image recovery. Taking the low-resolution features encoded by the encoder as tokens input into the Transformer bottleneck guarantees that long-range pixel interactions are captured while reducing the computational burden. Meanwhile, we apply a gated module for filtering redundant information propagation between every two phases. In addition, long-range enhanced inpainting is further introduced to mining the ability of PCformer to exploit distant complementary features. Extensive experiments yield superior results and in particular establishing new state-of-the-art results on several image restoration tasks, including deraining (+0.37 dB on Rain13K), denoising (+0.11 dB on DND), dehazing (+0.56 dB on I-HAZE), enhancement (+0.72 dB on SICE), and shadow removal (+0.65 RMSE on ISTD). The implementation code is available at https://github.com/Jeasco/PCformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sue完成签到 ,获得积分10
刚刚
小柴完成签到,获得积分10
刚刚
gennp完成签到,获得积分10
刚刚
眼睛大唯雪完成签到 ,获得积分10
刚刚
乐陶陶完成签到,获得积分10
1秒前
今后应助刻苦觅荷采纳,获得10
1秒前
勤奋谷秋完成签到 ,获得积分10
2秒前
Jeneration完成签到 ,获得积分10
2秒前
体贴精灵完成签到 ,获得积分10
2秒前
kyt完成签到,获得积分10
2秒前
2秒前
jenny完成签到 ,获得积分10
2秒前
剑来完成签到 ,获得积分10
2秒前
狂野的冰真完成签到 ,获得积分10
3秒前
科研little高完成签到 ,获得积分10
3秒前
摩羯无界完成签到,获得积分10
3秒前
zsc668完成签到 ,获得积分10
3秒前
羲和完成签到 ,获得积分10
3秒前
SciGPT应助谨慎的涫采纳,获得10
3秒前
悲凉的念波完成签到 ,获得积分10
3秒前
sallyieong完成签到 ,获得积分10
3秒前
阔达依秋完成签到 ,获得积分10
3秒前
心灵美凝竹完成签到 ,获得积分10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
殷勤的小白菜完成签到 ,获得积分10
3秒前
天天快乐应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
Lu完成签到 ,获得积分10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
我只想躺平完成签到 ,获得积分10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
Komorebi完成签到 ,获得积分10
4秒前
酷波er应助一半采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
乐观的雁易完成签到 ,获得积分10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662173
求助须知:如何正确求助?哪些是违规求助? 3223026
关于积分的说明 9749872
捐赠科研通 2932763
什么是DOI,文献DOI怎么找? 1605829
邀请新用户注册赠送积分活动 758174
科研通“疑难数据库(出版商)”最低求助积分说明 734727