ConTriFormer: triggers-guided contextual informer for remaining useful life prediction of rolling bearings

计算机科学 特征(语言学) 卷积(计算机科学) 人工智能 模式识别(心理学) 背景(考古学) 适应性 数据挖掘 机器学习 人工神经网络 古生物学 哲学 语言学 生物 生态学
作者
Bin Pang,Z. Hua,Dianxin Zhao,Zhenli Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105121-105121
标识
DOI:10.1088/1361-6501/ace46d
摘要

Abstract Rolling bearings are critical components in many industrial fields, and their stability directly affects the performance and safety of the industrial equipment. Accurate prediction of remaining useful life (RUL) of rolling bearings is a heated topic in modern research. Traditional strategies are unable to efficiently exploit the significant features of the data, resulting in the inability to determine the starting time of prediction along with a reduced prediction accuracy. Accordingly, this paper proposes a novel data-driven prediction model named ConTriFormer, which incorporates multi-feature triggers focusing on various scales of input signals, and the ConvNeXt V2 sparse convolution strategy within the contextual Informer architecture for estimating RUL. Firstly, significant feature indicators of the original data are calculated to construct feature triggers, resulting in a multi-feature fusion. Secondly, the starting time for prediction is obtained through quantified results from fault-sensitive triggers. Thirdly, the original signal with triggers embedded is encoded and organized into sparse matrices to facilitate the simplification of subsequent computations. Sparse features and dynamic context information reflecting bearing state changes are obtained through ConvNeXt V2 sparse convolution, which is input into the Informer structure with contextual attentive structures inside for better adaptability to long time-span dynamic data and lower spatiotemporal complexity for feature mining and prediction. Finally, the prediction results are obtained by mapping output values to the remaining life through a fully connected layer. The proposed algorithm is compared with mainstream deep learning algorithms such as Bi-LSTM and Convolutional Transformer using the XJTU-SY dataset and PHM 2012 dataset, and the effectiveness of model is verified with ablation study. Results show that, the proposed method can more accurately predict RUL, providing a high-precision and intelligent method for prognostics health management of rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
东郭一斩发布了新的文献求助10
1秒前
1秒前
www发布了新的文献求助10
2秒前
Han完成签到,获得积分10
4秒前
憨憨医生发布了新的文献求助200
5秒前
xiao123789发布了新的文献求助10
6秒前
淀粉完成签到,获得积分10
6秒前
围城烟火完成签到,获得积分10
6秒前
九九九发布了新的文献求助10
6秒前
Akim应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
坦率白萱应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
HarryChan应助科研通管家采纳,获得10
9秒前
9秒前
wanci应助科研通管家采纳,获得10
9秒前
9秒前
Jasper应助FGG采纳,获得10
9秒前
9秒前
HarryChan应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
孙燕应助科研通管家采纳,获得30
9秒前
12秒前
打打应助thth采纳,获得10
14秒前
14秒前
科研小陈完成签到,获得积分10
15秒前
binbin完成签到,获得积分10
15秒前
kong发布了新的文献求助10
16秒前
Sandwich完成签到,获得积分20
17秒前
Owen应助xiao123789采纳,获得10
17秒前
ZhangR完成签到,获得积分10
19秒前
20秒前
21秒前
21秒前
21秒前
thth完成签到,获得积分10
22秒前
22秒前
思源应助劈里啪啦滴毛毛采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999460
求助须知:如何正确求助?哪些是违规求助? 3538836
关于积分的说明 11275255
捐赠科研通 3277713
什么是DOI,文献DOI怎么找? 1807651
邀请新用户注册赠送积分活动 883983
科研通“疑难数据库(出版商)”最低求助积分说明 810111