ConTriFormer: triggers-guided contextual informer for remaining useful life prediction of rolling bearings

计算机科学 特征(语言学) 卷积(计算机科学) 人工智能 模式识别(心理学) 背景(考古学) 适应性 数据挖掘 机器学习 人工神经网络 古生物学 哲学 语言学 生物 生态学
作者
Bin Pang,Z. Hua,Dekuan Zhao,Zhenli Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105121-105121
标识
DOI:10.1088/1361-6501/ace46d
摘要

Abstract Rolling bearings are critical components in many industrial fields, and their stability directly affects the performance and safety of the industrial equipment. Accurate prediction of remaining useful life (RUL) of rolling bearings is a heated topic in modern research. Traditional strategies are unable to efficiently exploit the significant features of the data, resulting in the inability to determine the starting time of prediction along with a reduced prediction accuracy. Accordingly, this paper proposes a novel data-driven prediction model named ConTriFormer, which incorporates multi-feature triggers focusing on various scales of input signals, and the ConvNeXt V2 sparse convolution strategy within the contextual Informer architecture for estimating RUL. Firstly, significant feature indicators of the original data are calculated to construct feature triggers, resulting in a multi-feature fusion. Secondly, the starting time for prediction is obtained through quantified results from fault-sensitive triggers. Thirdly, the original signal with triggers embedded is encoded and organized into sparse matrices to facilitate the simplification of subsequent computations. Sparse features and dynamic context information reflecting bearing state changes are obtained through ConvNeXt V2 sparse convolution, which is input into the Informer structure with contextual attentive structures inside for better adaptability to long time-span dynamic data and lower spatiotemporal complexity for feature mining and prediction. Finally, the prediction results are obtained by mapping output values to the remaining life through a fully connected layer. The proposed algorithm is compared with mainstream deep learning algorithms such as Bi-LSTM and Convolutional Transformer using the XJTU-SY dataset and PHM 2012 dataset, and the effectiveness of model is verified with ablation study. Results show that, the proposed method can more accurately predict RUL, providing a high-precision and intelligent method for prognostics health management of rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助Hu111采纳,获得10
1秒前
khaosyi完成签到 ,获得积分10
2秒前
哇哈哈完成签到,获得积分10
3秒前
3秒前
buno应助啦啦采纳,获得10
4秒前
Mike完成签到,获得积分10
4秒前
4秒前
顾矜应助chen采纳,获得10
5秒前
科研通AI5应助小王采纳,获得10
5秒前
GGBond完成签到,获得积分10
5秒前
孔雀翎发布了新的文献求助10
5秒前
寂寞的灵完成签到,获得积分10
6秒前
后知后觉发布了新的文献求助10
6秒前
百十余完成签到,获得积分10
6秒前
6秒前
6秒前
Zhaorf完成签到,获得积分10
7秒前
沉默紫槐完成签到,获得积分10
7秒前
深情安青应助易达采纳,获得10
7秒前
默默海露发布了新的文献求助10
9秒前
10秒前
flyfish完成签到,获得积分10
10秒前
36456657应助chen采纳,获得10
10秒前
每念至此完成签到,获得积分10
11秒前
大力黑米完成签到 ,获得积分10
12秒前
123发布了新的文献求助30
12秒前
搜集达人应助gaos采纳,获得10
12秒前
hengy发布了新的文献求助10
12秒前
杳鸢应助Xenia采纳,获得10
13秒前
kekekelili完成签到,获得积分10
14秒前
14秒前
zhonghbush发布了新的文献求助10
15秒前
reck发布了新的文献求助10
15秒前
15秒前
15秒前
kimcandy完成签到,获得积分10
15秒前
华仔应助任品贤采纳,获得10
16秒前
无花果应助急雪回风采纳,获得10
16秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672