亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hyperspectral Image Classification With Multi-Attention Transformer and Adaptive Superpixel Segmentation-Based Active Learning

人工智能 高光谱成像 模式识别(心理学) 计算机科学 分割 卷积神经网络 嵌入 图像分割 变压器 特征提取 计算机视觉 物理 量子力学 电压
作者
Chunhui Zhao,Boao Qin,Shou Feng,Wen‐Xiang Zhu,Weiwei Sun,Wei Li,Xiuping Jia
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 3606-3621 被引量:76
标识
DOI:10.1109/tip.2023.3287738
摘要

Deep learning (DL) based methods represented by convolutional neural networks (CNNs) are widely used in hyperspectral image classification (HSIC). Some of these methods have strong ability to extract local information, but the extraction of long-range features is slightly inefficient, while others are just the opposite. For example, limited by the receptive fields, CNN is difficult to capture the contextual spectral-spatial features from a long-range spectral-spatial relationship. Besides, the success of DL-based methods is greatly attributed to numerous labeled samples, whose acquisition are time-consuming and cost-consuming. To resolve these problems, a hyperspectral classification framework based on multi-attention Transformer (MAT) and adaptive superpixel segmentation-based active learning (MAT-ASSAL) is proposed, which successfully achieves excellent classification performance, especially under the condition of small-size samples. Firstly, a multi-attention Transformer network is built for HSIC. Specifically, the self-attention module of Transformer is applied to model long-range contextual dependency between spectral-spatial embedding. Moreover, in order to capture local features, an outlook-attention module which can efficiently encode fine-level features and contexts into tokens is utilized to improve the correlation between the center spectral-spatial embedding and its surroundings. Secondly, aiming to train a excellent MAT model through limited labeled samples, a novel active learning (AL) based on superpixel segmentation is proposed to select important samples for MAT. Finally, to better integrate local spatial similarity into active learning, an adaptive superpixel (SP) segmentation algorithm, which can save SPs in uninformative regions and preserve edge details in complex regions, is employed to generate better local spatial constraints for AL. Quantitative and qualitative results indicate that the MAT-ASSAL outperforms seven state-of-the-art methods on three HSI datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kashing完成签到,获得积分10
1秒前
赘婿应助科研小白采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
VDC应助科研通管家采纳,获得30
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
28秒前
wanci应助烂漫的无剑采纳,获得10
28秒前
34秒前
xqq完成签到,获得积分10
36秒前
科研小白发布了新的文献求助10
40秒前
11111完成签到,获得积分10
41秒前
小刘在学习完成签到,获得积分20
42秒前
48秒前
52秒前
58秒前
贝壳beck发布了新的文献求助10
1分钟前
烂漫的无剑完成签到,获得积分10
1分钟前
李健应助科研小白采纳,获得10
1分钟前
1分钟前
略略略完成签到,获得积分10
1分钟前
1分钟前
一木完成签到,获得积分10
1分钟前
略略略发布了新的文献求助10
1分钟前
11完成签到,获得积分20
1分钟前
李雨芯完成签到,获得积分10
1分钟前
大个应助李雨芯采纳,获得10
1分钟前
2分钟前
swwhite发布了新的文献求助10
2分钟前
科研小白发布了新的文献求助10
2分钟前
充电宝应助wucl1990采纳,获得10
2分钟前
2分钟前
wucl1990发布了新的文献求助10
2分钟前
DrSong完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
2分钟前
dahai发布了新的文献求助10
2分钟前
ding应助科研小白采纳,获得10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135509
关于积分的说明 9412416
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716865