Hyperspectral Image Classification With Multi-Attention Transformer and Adaptive Superpixel Segmentation-Based Active Learning

人工智能 高光谱成像 模式识别(心理学) 计算机科学 分割 卷积神经网络 嵌入 图像分割 变压器 特征提取 计算机视觉 物理 量子力学 电压
作者
Chunhui Zhao,Boao Qin,Shou Feng,Wen‐Xiang Zhu,Weiwei Sun,Wei Li,Xiuping Jia
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 3606-3621 被引量:76
标识
DOI:10.1109/tip.2023.3287738
摘要

Deep learning (DL) based methods represented by convolutional neural networks (CNNs) are widely used in hyperspectral image classification (HSIC). Some of these methods have strong ability to extract local information, but the extraction of long-range features is slightly inefficient, while others are just the opposite. For example, limited by the receptive fields, CNN is difficult to capture the contextual spectral-spatial features from a long-range spectral-spatial relationship. Besides, the success of DL-based methods is greatly attributed to numerous labeled samples, whose acquisition are time-consuming and cost-consuming. To resolve these problems, a hyperspectral classification framework based on multi-attention Transformer (MAT) and adaptive superpixel segmentation-based active learning (MAT-ASSAL) is proposed, which successfully achieves excellent classification performance, especially under the condition of small-size samples. Firstly, a multi-attention Transformer network is built for HSIC. Specifically, the self-attention module of Transformer is applied to model long-range contextual dependency between spectral-spatial embedding. Moreover, in order to capture local features, an outlook-attention module which can efficiently encode fine-level features and contexts into tokens is utilized to improve the correlation between the center spectral-spatial embedding and its surroundings. Secondly, aiming to train a excellent MAT model through limited labeled samples, a novel active learning (AL) based on superpixel segmentation is proposed to select important samples for MAT. Finally, to better integrate local spatial similarity into active learning, an adaptive superpixel (SP) segmentation algorithm, which can save SPs in uninformative regions and preserve edge details in complex regions, is employed to generate better local spatial constraints for AL. Quantitative and qualitative results indicate that the MAT-ASSAL outperforms seven state-of-the-art methods on three HSI datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
starboy2nd完成签到,获得积分10
1秒前
1秒前
寒冷的南琴完成签到 ,获得积分20
2秒前
pluto应助提米橘采纳,获得50
3秒前
zero发布了新的文献求助10
3秒前
3秒前
三三完成签到,获得积分10
4秒前
香蕉觅云应助小元采纳,获得10
4秒前
4秒前
猫屿发布了新的文献求助10
5秒前
用户12306发布了新的文献求助10
5秒前
academician完成签到,获得积分10
5秒前
生动惜灵应助ruru采纳,获得10
7秒前
DIDI完成签到,获得积分10
7秒前
8秒前
orixero应助肥羊采纳,获得10
8秒前
9秒前
zengzeng完成签到,获得积分10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得20
9秒前
9秒前
今后应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
11秒前
SMU小刘~发布了新的文献求助10
12秒前
12秒前
研友_VZG7GZ应助千里采纳,获得10
13秒前
风中盼易发布了新的文献求助10
13秒前
兜兜发布了新的文献求助10
13秒前
Leon应助帅气代柔采纳,获得20
13秒前
科研通AI2S应助ghgh43采纳,获得10
14秒前
烟花应助糊涂的阿卵采纳,获得10
14秒前
15秒前
云起龙都发布了新的文献求助10
15秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434032
求助须知:如何正确求助?哪些是违规求助? 3031223
关于积分的说明 8941345
捐赠科研通 2719217
什么是DOI,文献DOI怎么找? 1491694
科研通“疑难数据库(出版商)”最低求助积分说明 689392
邀请新用户注册赠送积分活动 685523