Unsupervised Domain Adaptation Damage Identification Approach of High Arch Dams after Earthquakes

拱坝 结构健康监测 计算机科学 拱门 鉴定(生物学) 数据挖掘 特征(语言学) 一般化 适应(眼睛) 领域(数学分析) 传感器融合 工程类 人工智能 结构工程 数学 哲学 数学分析 物理 光学 生物 植物 语言学
作者
Xiangyu Cao,Liang Chen,Jianyun Chen,Jing Li,Lu Wenyan,Haixiang Liu,Pengfei Liu,KE Min-yong,Tang Yunqing
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2023: 1-18 被引量:3
标识
DOI:10.1155/2023/6349167
摘要

In actual concrete arch dam engineering scenarios, the dynamic data obtained by the health monitoring system of an arch dam are incomplete. The data acquired typically depend on the state of the dam structure, that is, whether it is intact or incomplete. Besides, the future environmental loads of the structure are unpredictable. Thus, environmental noise is also uncertain. In practical engineering, the use of a damage identification model constructed based on incomplete information is problematic in scenarios with variable loads. Consequently, detecting the water level in actual arch dam projects after an earthquake and determining the impact of environmental uncertainty are necessary. Accordingly, this paper proposes a denoising contractive sparse deep autoencoder (DCS-DAE) model based on domain adaptation. The core idea of the proposed method is to constrain the data probability distribution of feature spaces in the source and target domains using maximum mean discrepancy. This fusion enables the DCS-DAE model to be capable of feature extraction. Moreover, it resolves the problem in which the objective function cannot be applied to other similar scenarios because of the lack of consistency constraints of feature spaces in the source and target domains. Four working conditions are designed to reproduce the uncertainty of structural modeling and the variability of water levels. The conditions are based on the postseismic water level detection requisites of dams in practical engineering. The results show that the proposed anomaly detection model enhances the generalization performance of the DCS-DAE in terms of feature design. Hence, the constructed model can “infer other things from one fact.” The results of this study are meaningful for the real-time cross-domain monitoring of structures under variable load conditions, providing a driving force to apply similar methods to practical arch dam projects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十五完成签到,获得积分10
刚刚
可爱的函函应助Richard采纳,获得10
1秒前
oneonlycrown完成签到,获得积分10
2秒前
感谢大家发布了新的文献求助10
2秒前
2秒前
FashionBoy应助破碎的试剂采纳,获得10
3秒前
水123发布了新的文献求助10
3秒前
4秒前
jinxing完成签到,获得积分10
4秒前
王涵秋发布了新的文献求助10
4秒前
cici完成签到 ,获得积分10
4秒前
4秒前
5秒前
liquor完成签到,获得积分10
5秒前
6秒前
完美世界应助711采纳,获得10
8秒前
克里斯蒂龙完成签到,获得积分20
8秒前
无极微光应助fireflieszy采纳,获得20
8秒前
海德堡发布了新的文献求助10
8秒前
lbl完成签到,获得积分10
9秒前
棉花糖完成签到 ,获得积分10
9秒前
10秒前
一一应助感谢大家采纳,获得10
10秒前
perchasing完成签到,获得积分10
10秒前
12秒前
llly完成签到,获得积分10
13秒前
隐形曼青应助王涵秋采纳,获得10
13秒前
niNe3YUE应助菜菜酱爱火锅采纳,获得10
14秒前
14秒前
fengfeng完成签到,获得积分20
15秒前
HGUYG发布了新的文献求助10
16秒前
16秒前
17秒前
mucheng发布了新的文献求助10
18秒前
大龙哥886应助虚拟的怀绿采纳,获得10
18秒前
711发布了新的文献求助10
19秒前
chenzhi发布了新的文献求助10
20秒前
20秒前
Bobi完成签到 ,获得积分10
20秒前
wsqg123完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603942
求助须知:如何正确求助?哪些是违规求助? 4688789
关于积分的说明 14856201
捐赠科研通 4695596
什么是DOI,文献DOI怎么找? 2541056
邀请新用户注册赠送积分活动 1507200
关于科研通互助平台的介绍 1471832