Unsupervised Domain Adaptation Damage Identification Approach of High Arch Dams after Earthquakes

拱坝 结构健康监测 计算机科学 拱门 鉴定(生物学) 数据挖掘 特征(语言学) 一般化 适应(眼睛) 领域(数学分析) 传感器融合 工程类 人工智能 结构工程 数学 哲学 数学分析 物理 光学 生物 植物 语言学
作者
Xiangyu Cao,Liang Chen,Jianyun Chen,Jing Li,Lu Wenyan,Haixiang Liu,Pengfei Liu,KE Min-yong,Tang Yunqing
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2023: 1-18 被引量:3
标识
DOI:10.1155/2023/6349167
摘要

In actual concrete arch dam engineering scenarios, the dynamic data obtained by the health monitoring system of an arch dam are incomplete. The data acquired typically depend on the state of the dam structure, that is, whether it is intact or incomplete. Besides, the future environmental loads of the structure are unpredictable. Thus, environmental noise is also uncertain. In practical engineering, the use of a damage identification model constructed based on incomplete information is problematic in scenarios with variable loads. Consequently, detecting the water level in actual arch dam projects after an earthquake and determining the impact of environmental uncertainty are necessary. Accordingly, this paper proposes a denoising contractive sparse deep autoencoder (DCS-DAE) model based on domain adaptation. The core idea of the proposed method is to constrain the data probability distribution of feature spaces in the source and target domains using maximum mean discrepancy. This fusion enables the DCS-DAE model to be capable of feature extraction. Moreover, it resolves the problem in which the objective function cannot be applied to other similar scenarios because of the lack of consistency constraints of feature spaces in the source and target domains. Four working conditions are designed to reproduce the uncertainty of structural modeling and the variability of water levels. The conditions are based on the postseismic water level detection requisites of dams in practical engineering. The results show that the proposed anomaly detection model enhances the generalization performance of the DCS-DAE in terms of feature design. Hence, the constructed model can “infer other things from one fact.” The results of this study are meaningful for the real-time cross-domain monitoring of structures under variable load conditions, providing a driving force to apply similar methods to practical arch dam projects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jiayouya发布了新的文献求助10
1秒前
眠羊发布了新的文献求助10
2秒前
怕孤单的忆灵关注了科研通微信公众号
2秒前
尹天扬完成签到,获得积分10
2秒前
C22完成签到,获得积分10
3秒前
FashionBoy应助zfihead采纳,获得10
3秒前
3秒前
JG完成签到,获得积分10
3秒前
6秒前
7秒前
王凯完成签到,获得积分10
8秒前
8秒前
huqing发布了新的文献求助60
9秒前
9秒前
ddboys1009发布了新的文献求助10
9秒前
10秒前
C22发布了新的文献求助10
11秒前
王凯发布了新的文献求助10
12秒前
冷艳惜梦发布了新的文献求助10
12秒前
cinnamonbrd发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
snow发布了新的文献求助30
17秒前
上官若男应助赶路人采纳,获得10
18秒前
小马甲应助毅诚菌采纳,获得10
19秒前
20秒前
cleva完成签到,获得积分10
20秒前
专注的问筠完成签到,获得积分10
20秒前
20秒前
1212发布了新的文献求助10
21秒前
22秒前
王jyk发布了新的文献求助20
22秒前
Bizibili完成签到,获得积分10
22秒前
冷傲的从雪完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604157
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857229
捐赠科研通 4696839
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851