Unsupervised Domain Adaptation Damage Identification Approach of High Arch Dams after Earthquakes

拱坝 结构健康监测 计算机科学 拱门 鉴定(生物学) 数据挖掘 特征(语言学) 一般化 适应(眼睛) 领域(数学分析) 传感器融合 工程类 人工智能 结构工程 数学 数学分析 语言学 哲学 植物 物理 光学 生物
作者
Xiangyu Cao,Liang Chen,Jianyun Chen,Jing Li,Lu Wenyan,Haixiang Liu,Pengfei Liu,KE Min-yong,Tang Yunqing
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2023: 1-18 被引量:3
标识
DOI:10.1155/2023/6349167
摘要

In actual concrete arch dam engineering scenarios, the dynamic data obtained by the health monitoring system of an arch dam are incomplete. The data acquired typically depend on the state of the dam structure, that is, whether it is intact or incomplete. Besides, the future environmental loads of the structure are unpredictable. Thus, environmental noise is also uncertain. In practical engineering, the use of a damage identification model constructed based on incomplete information is problematic in scenarios with variable loads. Consequently, detecting the water level in actual arch dam projects after an earthquake and determining the impact of environmental uncertainty are necessary. Accordingly, this paper proposes a denoising contractive sparse deep autoencoder (DCS-DAE) model based on domain adaptation. The core idea of the proposed method is to constrain the data probability distribution of feature spaces in the source and target domains using maximum mean discrepancy. This fusion enables the DCS-DAE model to be capable of feature extraction. Moreover, it resolves the problem in which the objective function cannot be applied to other similar scenarios because of the lack of consistency constraints of feature spaces in the source and target domains. Four working conditions are designed to reproduce the uncertainty of structural modeling and the variability of water levels. The conditions are based on the postseismic water level detection requisites of dams in practical engineering. The results show that the proposed anomaly detection model enhances the generalization performance of the DCS-DAE in terms of feature design. Hence, the constructed model can “infer other things from one fact.” The results of this study are meaningful for the real-time cross-domain monitoring of structures under variable load conditions, providing a driving force to apply similar methods to practical arch dam projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kskd完成签到 ,获得积分10
2秒前
羫孔发布了新的文献求助10
4秒前
yy发布了新的文献求助10
5秒前
6秒前
ding应助匆匆采纳,获得10
6秒前
清脆白安完成签到,获得积分20
8秒前
9秒前
羫孔完成签到,获得积分10
11秒前
11秒前
SciGPT应助Au采纳,获得10
12秒前
orixero应助SunGuangkai采纳,获得10
12秒前
13秒前
研友_ZAxQqn完成签到,获得积分10
14秒前
18秒前
18秒前
19秒前
雪白的尔琴完成签到,获得积分10
19秒前
匆匆发布了新的文献求助10
19秒前
敬老院N号应助bodhi采纳,获得30
19秒前
赵一丁完成签到,获得积分10
20秒前
20秒前
Llllll发布了新的文献求助20
23秒前
SunGuangkai发布了新的文献求助10
24秒前
三十四画生完成签到,获得积分10
24秒前
24秒前
yy发布了新的文献求助10
24秒前
isabella完成签到,获得积分10
25秒前
25秒前
WizBLue发布了新的文献求助10
26秒前
poparg发布了新的文献求助10
27秒前
28秒前
机智双双完成签到,获得积分10
29秒前
匆匆完成签到 ,获得积分10
29秒前
Au发布了新的文献求助10
29秒前
无花果应助三十四画生采纳,获得10
29秒前
30秒前
33秒前
儒雅海之完成签到,获得积分20
34秒前
方方公主完成签到,获得积分10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Divinatorische Texte II. Opferschau-Omina 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358814
求助须知:如何正确求助?哪些是违规求助? 2981866
关于积分的说明 8701086
捐赠科研通 2663560
什么是DOI,文献DOI怎么找? 1458528
科研通“疑难数据库(出版商)”最低求助积分说明 675150
邀请新用户注册赠送积分活动 666192