Unsupervised Domain Adaptation Damage Identification Approach of High Arch Dams after Earthquakes

拱坝 结构健康监测 计算机科学 拱门 鉴定(生物学) 数据挖掘 特征(语言学) 一般化 适应(眼睛) 领域(数学分析) 传感器融合 工程类 人工智能 结构工程 数学 哲学 数学分析 物理 光学 生物 植物 语言学
作者
Xiangyu Cao,Liang Chen,Jianyun Chen,Jing Li,Lu Wenyan,Haixiang Liu,Pengfei Liu,KE Min-yong,Tang Yunqing
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2023: 1-18 被引量:3
标识
DOI:10.1155/2023/6349167
摘要

In actual concrete arch dam engineering scenarios, the dynamic data obtained by the health monitoring system of an arch dam are incomplete. The data acquired typically depend on the state of the dam structure, that is, whether it is intact or incomplete. Besides, the future environmental loads of the structure are unpredictable. Thus, environmental noise is also uncertain. In practical engineering, the use of a damage identification model constructed based on incomplete information is problematic in scenarios with variable loads. Consequently, detecting the water level in actual arch dam projects after an earthquake and determining the impact of environmental uncertainty are necessary. Accordingly, this paper proposes a denoising contractive sparse deep autoencoder (DCS-DAE) model based on domain adaptation. The core idea of the proposed method is to constrain the data probability distribution of feature spaces in the source and target domains using maximum mean discrepancy. This fusion enables the DCS-DAE model to be capable of feature extraction. Moreover, it resolves the problem in which the objective function cannot be applied to other similar scenarios because of the lack of consistency constraints of feature spaces in the source and target domains. Four working conditions are designed to reproduce the uncertainty of structural modeling and the variability of water levels. The conditions are based on the postseismic water level detection requisites of dams in practical engineering. The results show that the proposed anomaly detection model enhances the generalization performance of the DCS-DAE in terms of feature design. Hence, the constructed model can “infer other things from one fact.” The results of this study are meaningful for the real-time cross-domain monitoring of structures under variable load conditions, providing a driving force to apply similar methods to practical arch dam projects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RC_Wang应助丫丫采纳,获得10
刚刚
刚刚
丞相完成签到,获得积分10
1秒前
喵喵完成签到 ,获得积分10
1秒前
能干的小赵完成签到,获得积分10
1秒前
hchnb1234完成签到,获得积分10
1秒前
2秒前
3秒前
hchnb1234发布了新的文献求助10
4秒前
林云夕完成签到,获得积分10
4秒前
5秒前
HesperLxy发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
林云夕发布了新的文献求助10
10秒前
RC_Wang应助丫丫采纳,获得10
10秒前
ericlee1984发布了新的文献求助10
11秒前
Owen应助一坨台台采纳,获得10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
sheny1完成签到,获得积分10
15秒前
温柔柜子发布了新的文献求助10
16秒前
16秒前
科研通AI6.1应助李茉琳采纳,获得10
17秒前
郑泽航发布了新的文献求助10
17秒前
小蘑菇应助HBY采纳,获得10
17秒前
llf完成签到 ,获得积分10
18秒前
LX完成签到,获得积分10
18秒前
科研通AI6.1应助online1881采纳,获得10
18秒前
一坨台台完成签到,获得积分10
19秒前
19秒前
大力元霜完成签到,获得积分10
19秒前
20秒前
牛牛超人发布了新的文献求助20
21秒前
24秒前
boyis完成签到,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382