已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unsupervised Domain Adaptation Damage Identification Approach of High Arch Dams after Earthquakes

拱坝 结构健康监测 计算机科学 拱门 鉴定(生物学) 数据挖掘 特征(语言学) 一般化 适应(眼睛) 领域(数学分析) 传感器融合 工程类 人工智能 结构工程 数学 哲学 数学分析 物理 光学 生物 植物 语言学
作者
Xiangyu Cao,Liang Chen,Jianyun Chen,Jing Li,Lu Wenyan,Haixiang Liu,Pengfei Liu,KE Min-yong,Tang Yunqing
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2023: 1-18 被引量:3
标识
DOI:10.1155/2023/6349167
摘要

In actual concrete arch dam engineering scenarios, the dynamic data obtained by the health monitoring system of an arch dam are incomplete. The data acquired typically depend on the state of the dam structure, that is, whether it is intact or incomplete. Besides, the future environmental loads of the structure are unpredictable. Thus, environmental noise is also uncertain. In practical engineering, the use of a damage identification model constructed based on incomplete information is problematic in scenarios with variable loads. Consequently, detecting the water level in actual arch dam projects after an earthquake and determining the impact of environmental uncertainty are necessary. Accordingly, this paper proposes a denoising contractive sparse deep autoencoder (DCS-DAE) model based on domain adaptation. The core idea of the proposed method is to constrain the data probability distribution of feature spaces in the source and target domains using maximum mean discrepancy. This fusion enables the DCS-DAE model to be capable of feature extraction. Moreover, it resolves the problem in which the objective function cannot be applied to other similar scenarios because of the lack of consistency constraints of feature spaces in the source and target domains. Four working conditions are designed to reproduce the uncertainty of structural modeling and the variability of water levels. The conditions are based on the postseismic water level detection requisites of dams in practical engineering. The results show that the proposed anomaly detection model enhances the generalization performance of the DCS-DAE in terms of feature design. Hence, the constructed model can “infer other things from one fact.” The results of this study are meaningful for the real-time cross-domain monitoring of structures under variable load conditions, providing a driving force to apply similar methods to practical arch dam projects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Grey完成签到 ,获得积分10
刚刚
1秒前
oleskarabach完成签到,获得积分20
3秒前
5秒前
6秒前
大气靳发布了新的文献求助10
7秒前
27完成签到,获得积分20
10秒前
露露发布了新的文献求助10
11秒前
Anlocia完成签到 ,获得积分10
13秒前
斯文败类应助shinn采纳,获得10
13秒前
不吃菠萝蜜完成签到 ,获得积分10
13秒前
HuLL完成签到 ,获得积分10
14秒前
20秒前
大模型应助大气靳采纳,获得10
20秒前
大学生完成签到 ,获得积分10
22秒前
22秒前
跳跃小伙完成签到 ,获得积分10
23秒前
风之子完成签到,获得积分10
23秒前
77完成签到 ,获得积分10
24秒前
无名子完成签到 ,获得积分10
24秒前
慢慢来完成签到 ,获得积分20
26秒前
27秒前
大气靳完成签到,获得积分10
28秒前
TT工作好认真完成签到 ,获得积分10
29秒前
31秒前
jintian完成签到 ,获得积分10
34秒前
Aeeeeeeon完成签到 ,获得积分10
34秒前
shinn发布了新的文献求助10
36秒前
37秒前
慢慢来发布了新的文献求助10
38秒前
李爱国应助wczkzzyfxh采纳,获得10
38秒前
39秒前
miku完成签到 ,获得积分10
39秒前
shinn发布了新的文献求助10
42秒前
阿斯蒂和琴酒完成签到 ,获得积分10
43秒前
贺六浑发布了新的文献求助20
44秒前
Ava应助111采纳,获得30
46秒前
步步完成签到 ,获得积分10
47秒前
852应助科研通管家采纳,获得10
48秒前
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681075
求助须知:如何正确求助?哪些是违规求助? 5003997
关于积分的说明 15174789
捐赠科研通 4840762
什么是DOI,文献DOI怎么找? 2594411
邀请新用户注册赠送积分活动 1547531
关于科研通互助平台的介绍 1505468