Unsupervised Domain Adaptation Damage Identification Approach of High Arch Dams after Earthquakes

拱坝 结构健康监测 计算机科学 拱门 鉴定(生物学) 数据挖掘 特征(语言学) 一般化 适应(眼睛) 领域(数学分析) 传感器融合 工程类 人工智能 结构工程 数学 哲学 数学分析 物理 光学 生物 植物 语言学
作者
Xiangyu Cao,Liang Chen,Jianyun Chen,Jing Li,Lu Wenyan,Haixiang Liu,Pengfei Liu,KE Min-yong,Tang Yunqing
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2023: 1-18 被引量:3
标识
DOI:10.1155/2023/6349167
摘要

In actual concrete arch dam engineering scenarios, the dynamic data obtained by the health monitoring system of an arch dam are incomplete. The data acquired typically depend on the state of the dam structure, that is, whether it is intact or incomplete. Besides, the future environmental loads of the structure are unpredictable. Thus, environmental noise is also uncertain. In practical engineering, the use of a damage identification model constructed based on incomplete information is problematic in scenarios with variable loads. Consequently, detecting the water level in actual arch dam projects after an earthquake and determining the impact of environmental uncertainty are necessary. Accordingly, this paper proposes a denoising contractive sparse deep autoencoder (DCS-DAE) model based on domain adaptation. The core idea of the proposed method is to constrain the data probability distribution of feature spaces in the source and target domains using maximum mean discrepancy. This fusion enables the DCS-DAE model to be capable of feature extraction. Moreover, it resolves the problem in which the objective function cannot be applied to other similar scenarios because of the lack of consistency constraints of feature spaces in the source and target domains. Four working conditions are designed to reproduce the uncertainty of structural modeling and the variability of water levels. The conditions are based on the postseismic water level detection requisites of dams in practical engineering. The results show that the proposed anomaly detection model enhances the generalization performance of the DCS-DAE in terms of feature design. Hence, the constructed model can “infer other things from one fact.” The results of this study are meaningful for the real-time cross-domain monitoring of structures under variable load conditions, providing a driving force to apply similar methods to practical arch dam projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
自由的鹏涛完成签到,获得积分20
7秒前
8秒前
在水一方应助Nayvue采纳,获得10
8秒前
11秒前
Ryan完成签到,获得积分10
12秒前
General完成签到 ,获得积分10
12秒前
谦让汝燕完成签到,获得积分10
14秒前
wellyou完成签到,获得积分10
15秒前
mint完成签到,获得积分10
17秒前
afli完成签到 ,获得积分0
20秒前
21秒前
Yy完成签到 ,获得积分10
24秒前
Nayvue发布了新的文献求助10
26秒前
feng完成签到,获得积分10
26秒前
淡淡的小蘑菇完成签到 ,获得积分10
29秒前
G_Serron完成签到,获得积分10
30秒前
swordshine完成签到,获得积分10
30秒前
Anonymous完成签到,获得积分10
34秒前
medzhou完成签到,获得积分10
38秒前
儒雅的千秋完成签到,获得积分10
46秒前
普鲁卡因发布了新的文献求助10
49秒前
小雯完成签到,获得积分10
50秒前
搞怪梦寒完成签到,获得积分20
51秒前
喵了个咪完成签到 ,获得积分10
52秒前
mc完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助10
57秒前
58秒前
58秒前
虚幻谷波完成签到,获得积分10
1分钟前
ruochenzu发布了新的文献求助10
1分钟前
小马甲应助搞怪梦寒采纳,获得10
1分钟前
firewood完成签到 ,获得积分10
1分钟前
天天快乐应助普鲁卡因采纳,获得10
1分钟前
orixero应助NXK采纳,获得10
1分钟前
bjr完成签到 ,获得积分10
1分钟前
研友_LwlAgn完成签到,获得积分10
1分钟前
陈昊完成签到,获得积分10
1分钟前
1分钟前
tian发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022