Unsupervised Domain Adaptation Damage Identification Approach of High Arch Dams after Earthquakes

拱坝 结构健康监测 计算机科学 拱门 鉴定(生物学) 数据挖掘 特征(语言学) 一般化 适应(眼睛) 领域(数学分析) 传感器融合 工程类 人工智能 结构工程 数学 哲学 数学分析 物理 光学 生物 植物 语言学
作者
Xiangyu Cao,Liang Chen,Jianyun Chen,Jing Li,Lu Wenyan,Haixiang Liu,Pengfei Liu,KE Min-yong,Tang Yunqing
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2023: 1-18 被引量:3
标识
DOI:10.1155/2023/6349167
摘要

In actual concrete arch dam engineering scenarios, the dynamic data obtained by the health monitoring system of an arch dam are incomplete. The data acquired typically depend on the state of the dam structure, that is, whether it is intact or incomplete. Besides, the future environmental loads of the structure are unpredictable. Thus, environmental noise is also uncertain. In practical engineering, the use of a damage identification model constructed based on incomplete information is problematic in scenarios with variable loads. Consequently, detecting the water level in actual arch dam projects after an earthquake and determining the impact of environmental uncertainty are necessary. Accordingly, this paper proposes a denoising contractive sparse deep autoencoder (DCS-DAE) model based on domain adaptation. The core idea of the proposed method is to constrain the data probability distribution of feature spaces in the source and target domains using maximum mean discrepancy. This fusion enables the DCS-DAE model to be capable of feature extraction. Moreover, it resolves the problem in which the objective function cannot be applied to other similar scenarios because of the lack of consistency constraints of feature spaces in the source and target domains. Four working conditions are designed to reproduce the uncertainty of structural modeling and the variability of water levels. The conditions are based on the postseismic water level detection requisites of dams in practical engineering. The results show that the proposed anomaly detection model enhances the generalization performance of the DCS-DAE in terms of feature design. Hence, the constructed model can “infer other things from one fact.” The results of this study are meaningful for the real-time cross-domain monitoring of structures under variable load conditions, providing a driving force to apply similar methods to practical arch dam projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiyiluo发布了新的文献求助10
刚刚
领导范儿应助坚强的紫菜采纳,获得10
1秒前
旺仔Mario发布了新的文献求助10
1秒前
wzy完成签到 ,获得积分10
2秒前
xmx发布了新的文献求助10
2秒前
123关闭了123文献求助
3秒前
3秒前
4秒前
香蕉静芙发布了新的文献求助20
4秒前
4秒前
梦想发布了新的文献求助20
5秒前
6秒前
汉堡包应助Tethys采纳,获得10
6秒前
彩色的奄发布了新的文献求助10
8秒前
cabbage关注了科研通微信公众号
9秒前
wbh发布了新的文献求助10
9秒前
keep完成签到 ,获得积分10
9秒前
笑嘻嘻发布了新的文献求助10
9秒前
善学以致用应助ff采纳,获得10
11秒前
11秒前
g123发布了新的文献求助10
11秒前
研友_VZG7GZ应助yiyiluo采纳,获得10
12秒前
12秒前
和谐的松鼠完成签到,获得积分10
12秒前
李健应助科研栀采纳,获得10
12秒前
12秒前
14秒前
田様应助xxxllllll采纳,获得10
14秒前
乐乐乐完成签到,获得积分20
14秒前
清欢完成签到,获得积分10
15秒前
shuang0116完成签到,获得积分0
15秒前
七一桉完成签到 ,获得积分10
15秒前
大方弘文发布了新的文献求助10
15秒前
keikei完成签到,获得积分10
16秒前
xuan发布了新的文献求助10
16秒前
天子笑发布了新的文献求助30
17秒前
hxn发布了新的文献求助30
18秒前
19秒前
胡说八道完成签到 ,获得积分10
20秒前
执着静竹完成签到,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531197
关于积分的说明 11252739
捐赠科研通 3269830
什么是DOI,文献DOI怎么找? 1804815
邀请新用户注册赠送积分活动 881915
科研通“疑难数据库(出版商)”最低求助积分说明 809028