Multitask Machine Learning to Predict Polymer–Solvent Miscibility Using Flory–Huggins Interaction Parameters

混溶性 聚合物 溶剂 弗洛里-哈金斯解理论 热力学 相(物质) 低临界溶液温度 材料科学 化学 共聚物 有机化学 物理
作者
Yuta Aoki,Stephen Wu,Teruki Tsurimoto,Yoshihiro Hayashi,Shunya Minami,Okubo Tadamichi,Kazuya Shiratori,Ryo Yoshida
出处
期刊:Macromolecules [American Chemical Society]
卷期号:56 (14): 5446-5456 被引量:51
标识
DOI:10.1021/acs.macromol.2c02600
摘要

Predicting and understanding the phase equilibria or phase separation in polymer–solvent solutions represent unresolved fundamental problems in polymer science. The phase behavior and thermodynamics of polymer miscibility depend on the inter- and intramolecular interactions of a polymer with a certain molecular weight distribution mixed with a solvent. Here, we develop a machine-learning framework to achieve highly generalized and robust prediction of Flory–Huggins χ parameters for polymer–solvent solutions. The model was trained using experimentally observed temperature-dependent χ parameters for 1190 samples, comprising 46 unique polymers and 140 solvent species. However, the difficulty was that the data set was quantitatively limited and qualitatively biased owing to technical issues in determining the Flory–Huggins χ parameters. To overcome these limitations, we produced an in-house data set of χ parameters obtained from quantum chemical calculations for thousands of polymer–solvent pairs and a large list of soluble and insoluble polymer–solvent pairs. Using these three data sets, we conducted multitask machine learning that simultaneously performed the "soluble/insoluble" classification and quantitative evaluation of both experimental and calculated χ parameters. Consequently, we obtained a highly generalized model applicable to a wide range of polymer solution spaces. In this paper, the predictive power and physicochemical implications of the model are demonstrated, along with quantitative comparisons with existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lei发布了新的文献求助10
1秒前
大胆的向日葵完成签到,获得积分10
1秒前
Younes发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
碧蓝老黑完成签到,获得积分10
1秒前
炎燚发布了新的文献求助10
2秒前
2秒前
浮游应助魔音甜菜采纳,获得10
4秒前
科研通AI6应助满_1999采纳,获得10
5秒前
5秒前
7秒前
Ava应助fafafa采纳,获得10
8秒前
9秒前
科研通AI6应助alex采纳,获得10
10秒前
李健的小迷弟应助炎燚采纳,获得10
11秒前
闪闪的雨柏完成签到,获得积分10
12秒前
科研通AI6应助shengsheng采纳,获得10
13秒前
13秒前
科研通AI2S应助weixin112233采纳,获得10
13秒前
酷波er应助May采纳,获得10
13秒前
14秒前
14秒前
爱吃米线发布了新的文献求助10
14秒前
郑浩龙完成签到,获得积分10
14秒前
14秒前
Jane_Xin发布了新的文献求助10
15秒前
79完成签到,获得积分10
16秒前
ll完成签到,获得积分10
16秒前
16秒前
小卡拉米应助黎明采纳,获得10
16秒前
XiaoYuuu完成签到,获得积分10
16秒前
FashionBoy应助喂喂喂采纳,获得10
17秒前
Lei完成签到,获得积分10
17秒前
饭米粒发布了新的文献求助10
20秒前
20秒前
魔音甜菜完成签到,获得积分10
20秒前
ankang完成签到,获得积分10
20秒前
20秒前
21秒前
度帕明完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524