Multitask Machine Learning to Predict Polymer–Solvent Miscibility Using Flory–Huggins Interaction Parameters

混溶性 聚合物 溶剂 弗洛里-哈金斯解理论 热力学 相(物质) 低临界溶液温度 材料科学 化学 共聚物 有机化学 物理
作者
Yuta Aoki,Stephen Wu,Teruki Tsurimoto,Yoshihiro Hayashi,Shunya Minami,Okubo Tadamichi,Kazuya Shiratori,Ryo Yoshida
出处
期刊:Macromolecules [American Chemical Society]
卷期号:56 (14): 5446-5456 被引量:23
标识
DOI:10.1021/acs.macromol.2c02600
摘要

Predicting and understanding the phase equilibria or phase separation in polymer–solvent solutions represent unresolved fundamental problems in polymer science. The phase behavior and thermodynamics of polymer miscibility depend on the inter- and intramolecular interactions of a polymer with a certain molecular weight distribution mixed with a solvent. Here, we develop a machine-learning framework to achieve highly generalized and robust prediction of Flory–Huggins χ parameters for polymer–solvent solutions. The model was trained using experimentally observed temperature-dependent χ parameters for 1190 samples, comprising 46 unique polymers and 140 solvent species. However, the difficulty was that the data set was quantitatively limited and qualitatively biased owing to technical issues in determining the Flory–Huggins χ parameters. To overcome these limitations, we produced an in-house data set of χ parameters obtained from quantum chemical calculations for thousands of polymer–solvent pairs and a large list of soluble and insoluble polymer–solvent pairs. Using these three data sets, we conducted multitask machine learning that simultaneously performed the "soluble/insoluble" classification and quantitative evaluation of both experimental and calculated χ parameters. Consequently, we obtained a highly generalized model applicable to a wide range of polymer solution spaces. In this paper, the predictive power and physicochemical implications of the model are demonstrated, along with quantitative comparisons with existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张雯思发布了新的文献求助30
2秒前
顾矜应助张柔采纳,获得10
3秒前
feng完成签到,获得积分10
3秒前
1234完成签到 ,获得积分10
8秒前
9秒前
奥特超曼应助王半书采纳,获得10
9秒前
10秒前
俏皮马里奥完成签到 ,获得积分10
11秒前
Lucas应助Xylah_Rebecca采纳,获得30
11秒前
舒心的语芙关注了科研通微信公众号
11秒前
小尹完成签到 ,获得积分10
11秒前
小王小王完成签到 ,获得积分10
13秒前
diu发布了新的文献求助30
15秒前
王者归来完成签到,获得积分10
16秒前
17秒前
18秒前
CodeCraft应助LuoYixiang采纳,获得10
21秒前
传奇3应助Vicky采纳,获得10
22秒前
24秒前
儒雅致远发布了新的文献求助10
25秒前
不喜发布了新的文献求助10
27秒前
28秒前
孙燕应助七曜采纳,获得10
29秒前
脑洞疼应助草上飞采纳,获得10
30秒前
30秒前
寻梦完成签到,获得积分10
31秒前
Vicky完成签到,获得积分10
33秒前
谷得猫宁完成签到,获得积分20
33秒前
orixero应助儒雅致远采纳,获得10
36秒前
Vicky发布了新的文献求助10
36秒前
1351567822应助传统的迎南采纳,获得10
37秒前
充电宝应助一颗椰子糖耶采纳,获得10
37秒前
丘比特应助ultramix采纳,获得10
38秒前
38秒前
Rondab应助糊涂的雪珊采纳,获得30
39秒前
潜水读者完成签到,获得积分10
40秒前
diu完成签到,获得积分20
40秒前
43秒前
44秒前
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176