SNRMPACDC: computational model focused on Siamese network and random matrix projection for anticancer synergistic drug combination prediction

计算机科学 人工智能 随机投影 药品 抗癌药 投影(关系代数) 算法 药理学 医学
作者
Tianhao Li,Chun-Chun Wang,Li Zhang,Xing Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:34
标识
DOI:10.1093/bib/bbac503
摘要

Abstract Synergistic drug combinations can improve the therapeutic effect and reduce the drug dosage to avoid toxicity. In previous years, an in vitro approach was utilized to screen synergistic drug combinations. However, the in vitro method is time-consuming and expensive. With the rapid growth of high-throughput data, computational methods are becoming efficient tools to predict potential synergistic drug combinations. Considering the limitations of the previous computational methods, we developed a new model named Siamese Network and Random Matrix Projection for AntiCancer Drug Combination prediction (SNRMPACDC). Firstly, the Siamese convolutional network and random matrix projection were used to process the features of the two drugs into drug combination features. Then, the features of the cancer cell line were processed through the convolutional network. Finally, the processed features were integrated and input into the multi-layer perceptron network to get the predicted score. Compared with the traditional method of splicing drug features into drug combination features, SNRMPACDC improved the interpretability of drug combination features to a certain extent. In addition, the introduction of convolutional networks can better extract the potential information in the features. SNRMPACDC achieved the root mean-squared error of 15.01 and the Pearson correlation coefficient of 0.75 in 5-fold cross-validation of regression prediction for response data. In addition, SNRMPACDC achieved the AUC of 0.91 ± 0.03 and the AUPR of 0.62 ± 0.05 in 5-fold cross-validation of classification prediction of synergistic or not. These results are almost better than all the previous models. SNRMPACDC would be an effective approach to infer potential anticancer synergistic drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li发布了新的文献求助10
刚刚
1秒前
希望天下0贩的0应助江蹇采纳,获得10
2秒前
机灵柚子发布了新的文献求助10
2秒前
3秒前
慕苡发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
7秒前
8秒前
ekko发布了新的文献求助10
9秒前
根瘤君发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
DD完成签到,获得积分10
11秒前
释怀发布了新的文献求助10
13秒前
活力契发布了新的文献求助10
13秒前
fu发布了新的文献求助10
13秒前
pingping发布了新的文献求助10
14秒前
穆承羲完成签到 ,获得积分10
15秒前
15秒前
confident完成签到 ,获得积分10
15秒前
思源应助安静海露采纳,获得10
16秒前
健忘的雨安完成签到,获得积分10
16秒前
慕苡完成签到,获得积分10
17秒前
伯赏人杰发布了新的文献求助10
20秒前
猪猪hero应助对对碰采纳,获得10
21秒前
小马甲应助胖虎不胖采纳,获得10
22秒前
22秒前
根瘤君完成签到,获得积分10
23秒前
sunglow11完成签到,获得积分0
24秒前
斯文败类应助活力契采纳,获得10
25秒前
26秒前
26秒前
27秒前
儒雅采文关注了科研通微信公众号
27秒前
可靠觅珍应助酷酷白萱采纳,获得10
27秒前
风中的怜阳完成签到,获得积分10
27秒前
安静海露发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959821
求助须知:如何正确求助?哪些是违规求助? 3506056
关于积分的说明 11127696
捐赠科研通 3237994
什么是DOI,文献DOI怎么找? 1789429
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021