已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SNRMPACDC: computational model focused on Siamese network and random matrix projection for anticancer synergistic drug combination prediction

计算机科学 人工智能 随机投影 药品 抗癌药 投影(关系代数) 算法 药理学 医学
作者
Tianhao Li,Chun-Chun Wang,Li Zhang,Xing Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:40
标识
DOI:10.1093/bib/bbac503
摘要

Abstract Synergistic drug combinations can improve the therapeutic effect and reduce the drug dosage to avoid toxicity. In previous years, an in vitro approach was utilized to screen synergistic drug combinations. However, the in vitro method is time-consuming and expensive. With the rapid growth of high-throughput data, computational methods are becoming efficient tools to predict potential synergistic drug combinations. Considering the limitations of the previous computational methods, we developed a new model named Siamese Network and Random Matrix Projection for AntiCancer Drug Combination prediction (SNRMPACDC). Firstly, the Siamese convolutional network and random matrix projection were used to process the features of the two drugs into drug combination features. Then, the features of the cancer cell line were processed through the convolutional network. Finally, the processed features were integrated and input into the multi-layer perceptron network to get the predicted score. Compared with the traditional method of splicing drug features into drug combination features, SNRMPACDC improved the interpretability of drug combination features to a certain extent. In addition, the introduction of convolutional networks can better extract the potential information in the features. SNRMPACDC achieved the root mean-squared error of 15.01 and the Pearson correlation coefficient of 0.75 in 5-fold cross-validation of regression prediction for response data. In addition, SNRMPACDC achieved the AUC of 0.91 ± 0.03 and the AUPR of 0.62 ± 0.05 in 5-fold cross-validation of classification prediction of synergistic or not. These results are almost better than all the previous models. SNRMPACDC would be an effective approach to infer potential anticancer synergistic drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
李爱国应助lu916采纳,获得10
3秒前
炙热雅琴发布了新的文献求助10
4秒前
5秒前
CC发布了新的文献求助20
6秒前
科研通AI6应助微笑的采珊采纳,获得10
6秒前
执着的冬瓜完成签到 ,获得积分10
7秒前
7秒前
FashionBoy应助dy采纳,获得10
7秒前
上官若男应助安详的真采纳,获得10
7秒前
zhscu完成签到,获得积分10
7秒前
8秒前
10秒前
Tbq发布了新的文献求助10
11秒前
晚意意意意意完成签到 ,获得积分10
11秒前
12秒前
13秒前
Flora完成签到,获得积分10
13秒前
14秒前
orixero应助雪白阑悦采纳,获得10
14秒前
念l完成签到 ,获得积分10
15秒前
朴素蓝发布了新的文献求助10
17秒前
谨慎三问完成签到 ,获得积分10
17秒前
果泥发布了新的文献求助10
17秒前
。。。完成签到,获得积分10
19秒前
19秒前
LLayoooo完成签到,获得积分10
19秒前
Criminology34举报basil求助涉嫌违规
21秒前
李健应助骆西西采纳,获得10
22秒前
dy发布了新的文献求助10
24秒前
迅速友容完成签到 ,获得积分10
24秒前
30秒前
英俊的铭应助Tbq采纳,获得10
33秒前
Criminology34举报cwp求助涉嫌违规
34秒前
35秒前
36秒前
37秒前
38秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401107
求助须知:如何正确求助?哪些是违规求助? 4520125
关于积分的说明 14078405
捐赠科研通 4433074
什么是DOI,文献DOI怎么找? 2433990
邀请新用户注册赠送积分活动 1426148
关于科研通互助平台的介绍 1404738