SNRMPACDC: computational model focused on Siamese network and random matrix projection for anticancer synergistic drug combination prediction

计算机科学 人工智能 随机投影 药品 抗癌药 投影(关系代数) 算法 药理学 医学
作者
Tianhao Li,Chun-Chun Wang,Li Zhang,Xing Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:40
标识
DOI:10.1093/bib/bbac503
摘要

Abstract Synergistic drug combinations can improve the therapeutic effect and reduce the drug dosage to avoid toxicity. In previous years, an in vitro approach was utilized to screen synergistic drug combinations. However, the in vitro method is time-consuming and expensive. With the rapid growth of high-throughput data, computational methods are becoming efficient tools to predict potential synergistic drug combinations. Considering the limitations of the previous computational methods, we developed a new model named Siamese Network and Random Matrix Projection for AntiCancer Drug Combination prediction (SNRMPACDC). Firstly, the Siamese convolutional network and random matrix projection were used to process the features of the two drugs into drug combination features. Then, the features of the cancer cell line were processed through the convolutional network. Finally, the processed features were integrated and input into the multi-layer perceptron network to get the predicted score. Compared with the traditional method of splicing drug features into drug combination features, SNRMPACDC improved the interpretability of drug combination features to a certain extent. In addition, the introduction of convolutional networks can better extract the potential information in the features. SNRMPACDC achieved the root mean-squared error of 15.01 and the Pearson correlation coefficient of 0.75 in 5-fold cross-validation of regression prediction for response data. In addition, SNRMPACDC achieved the AUC of 0.91 ± 0.03 and the AUPR of 0.62 ± 0.05 in 5-fold cross-validation of classification prediction of synergistic or not. These results are almost better than all the previous models. SNRMPACDC would be an effective approach to infer potential anticancer synergistic drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
327完成签到,获得积分10
1秒前
脑壳疼完成签到,获得积分10
2秒前
2秒前
hhhooo完成签到,获得积分10
2秒前
朴艺晨完成签到 ,获得积分10
2秒前
Vicky发布了新的文献求助10
3秒前
赘婿应助guan采纳,获得30
3秒前
Yv发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
panzhongjie发布了新的文献求助10
4秒前
共享精神应助jason采纳,获得10
5秒前
longlong完成签到,获得积分10
5秒前
6秒前
left_right完成签到,获得积分10
6秒前
7秒前
执着的麦片完成签到,获得积分10
9秒前
9秒前
云不归完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
junxu发布了新的文献求助10
13秒前
some发布了新的文献求助10
13秒前
15秒前
坚果发布了新的文献求助10
15秒前
风趣冬瓜发布了新的文献求助10
16秒前
羊羊发布了新的文献求助10
16秒前
19秒前
田様应助大力山槐采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
20秒前
花卷应助科研通管家采纳,获得20
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
彭于彦祖应助科研通管家采纳,获得30
20秒前
Owen应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
田様应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601572
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847258
捐赠科研通 4681425
什么是DOI,文献DOI怎么找? 2539420
邀请新用户注册赠送积分活动 1506336
关于科研通互助平台的介绍 1471297