RAFF-Net: An improved tongue segmentation algorithm based on residual attention network and multiscale feature fusion

分割 计算机科学 残余物 人工智能 模式识别(心理学) 特征(语言学) 融合 编码器 舌头 图像分割 算法 语言学 操作系统 哲学
作者
Haibei Song,Zonghai Huang,Li Feng,Yanmei Zhong,Chuanbiao Wen,Jinhong Guo
出处
期刊:Digital health [SAGE]
卷期号:8: 205520762211363-205520762211363 被引量:5
标识
DOI:10.1177/20552076221136362
摘要

Due to the complexity of face images, tongue segmentation is susceptible to interference from uneven tongue texture, lips and face, resulting in traditional methods failing to segment the tongue accurately. To address this problem, RAFF-Net, an automatic tongue region segmentation network based on residual attention network and multiscale feature fusion, was proposed. It aims to improve tongue segmentation accuracy and achieve end-to-end automated segmentation.Based on the UNet backbone network, different numbers of ResBlocks combined with the Squeeze-and-Excitation (SE) block was used as an encoder to extract image layered features. The decoder structure of UNet was simplified and the number of parameters of the network model was reduced. Meanwhile, the multiscale feature fusion module was designed to optimize the network parameters by combining a custom loss function instead of the common cross-entropy loss function to further improve the detection accuracy.The RAFF-Net network structure achieved Mean Intersection over Union (MIoU) and F1-score of 97.85% and 97.73%, respectively, which improved 0.56% and 0.46%, respectively, compared with the original UNet; ablation experiments demonstrated that the improved algorithm could contribute to the enhancement of tongue segmentation effect.This study combined the residual attention network with multiscale feature fusion to effectively improve the segmentation accuracy of the tongue region, and optimized the input and output of the UNet network using different numbers of ResBlocks, SE block, multiscale feature fusion and weighted loss function, increased the stability of the network and improved the overall effect of the network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助robust66采纳,获得30
1秒前
无尽夏发布了新的文献求助10
2秒前
Solitude发布了新的文献求助20
2秒前
mh_yang发布了新的文献求助10
3秒前
斯文败类应助defndcdjjkb采纳,获得10
3秒前
4秒前
西瓜发布了新的文献求助10
5秒前
5秒前
5秒前
orixero应助科研通管家采纳,获得10
5秒前
shinysparrow应助科研通管家采纳,获得200
6秒前
oceanao应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
Ammon应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
6秒前
卤蛋完成签到,获得积分10
7秒前
情怀应助夏林采纳,获得10
7秒前
RED发布了新的文献求助10
9秒前
11秒前
华仔应助xxwxx采纳,获得10
12秒前
13秒前
小蘑菇应助小至采纳,获得10
13秒前
胖胖胖应助xxxksk采纳,获得100
13秒前
热心雁易发布了新的文献求助10
15秒前
科研通AI2S应助Finen采纳,获得10
16秒前
Lu发布了新的文献求助10
17秒前
susiyiyi发布了新的文献求助30
17秒前
FashionBoy应助赵哥采纳,获得10
19秒前
19秒前
甜甜的不二完成签到,获得积分10
19秒前
20秒前
springovo完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
22秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168686
求助须知:如何正确求助?哪些是违规求助? 2819981
关于积分的说明 7928751
捐赠科研通 2480048
什么是DOI,文献DOI怎么找? 1321168
科研通“疑难数据库(出版商)”最低求助积分说明 633088
版权声明 602484