材料科学
蒸发器
木质纤维素生物量
生物量(生态学)
海水淡化
太阳能淡化
化学工程
海水
蒸发
纤维素
化学
热交换器
地质学
工程类
物理
海洋学
热力学
生物化学
膜
作者
Xuliang Lin,Ping Wang,Ruitong Hong,Xi Zhu,Yingchun Liu,Xuejun Pan,Xueqing Qiu,Yanlin Qin
标识
DOI:10.1002/adfm.202209262
摘要
Abstract Solar‐driven interfacial evaporation is an important approach for solving the issue of freshwater scarcity. However, the practical application of solar steam generation is hindered by high fabrication cost and environmental concerns regarding the petroleum‐based materials. Herein, lignocellulose (cellulose‐lignin composite) hydrogel (LCG) and lignin‐derived carbon (LC) are used as the substrate and photothermal material, respectively, to construct a fully lignocellulose‐based double‐layered hydrogel (LC@LCG) evaporator. Results indicate that LC has an ultrahigh specific surface area and full‐spectrum solar absorption of 98%. The presence of lignin can improve the hydrophilicity and maintain the capillary channels of the hydrogel, which tunes water into an intermediate state and reduces the vaporization enthalpy of water. Moreover, it ensures a high water transport rate in the hydrogel. Based on these advantages, the evaporation rate and photothermal conversion efficiency of hydrogel evaporator reach 1.84 kg m −2 h −1 under one sun and 86.5%, respectively. The lignocellulosic hydrogel evaporator could remove >99.95% of primary metal ions from seawater to generate fresh water, and shows outstanding salt resistance, durability, and long‐term stability for desalination. This study demonstrates an eco‐friendly and economic solution for continuous freshwater production from seawater using a fully lignocellulosic biomass‐based hydrogel evaporator.
科研通智能强力驱动
Strongly Powered by AbleSci AI