作者
Okan İnce,Hakan Önder,Mehmet Gençtürk,Hakan Cebeci,Jafar Golzarian,Shamar Young
摘要
To create and evaluate the ability of machine learning-based models with clinicoradiomic features to predict radiologic response after transarterial radioembolization (TARE).82 treatment-naïve patients (65 responders and 17 nonresponders; median age: 65 years; interquartile range: 11) who underwent selective TARE were included. Treatment responses were evaluated using the European Association for the Study of the Liver criteria at 3-month follow-up. Laboratory, clinical, and procedural information were collected. Radiomic features were extracted from pretreatment contrast-enhanced T1-weighted magnetic resonance images obtained within 3 months before TARE. Feature selection consisted of intraclass correlation, followed by Pearson correlation analysis and finally, sequential feature selection algorithm. Support vector machine, logistic regression, random forest, and LightGBM models were created with both clinicoradiomic features and clinical features alone. Performance metrics were calculated with a nested 5-fold cross-validation technique. The performances of the models were compared by Wilcoxon signed-rank and Friedman tests.In total, 1,128 features were extracted. The feature selection process resulted in 12 features (8 radiomic and 4 clinical features) being included in the final analysis. The area under the receiver operating characteristic curve values from the support vector machine, logistic regression, random forest, and LightGBM models were 0.94, 0.94, 0.88, and 0.92 with clinicoradiomic features and 0.82, 0.83, 0.82, and 0.83 with clinical features alone, respectively. All models exhibited significantly higher performances when radiomic features were included (P = .028, .028, .043, and .028, respectively).Based on clinical and imaging-based information before treatment, machine learning-based clinicoradiomic models demonstrated potential to predict response to TARE.