Terrain Aided Planetary UAV Localization Based on Geo-referencing

计算机科学 计算机视觉 人工智能 束流调整 稳健性(进化) 地形 数字高程模型 同时定位和映射 全球定位系统 遥感 Orb(光学) 摄影测量学 图像(数学) 移动机器人 地质学 地理 机器人 电信 生物化学 化学 地图学 基因
作者
Xue Wan,Yuanbin Shao,Shengyang Zhang,Shengyang Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:11
标识
DOI:10.1109/tgrs.2022.3198745
摘要

The autonomous real-time optical navigation of planetary unmanned aerial vehicle (UAV) is of the key technologies to ensure the success of the exploration. In such a GPS-denied environment, vision-based localization is an optimal approach. In this article, we proposed a terrain aided simultaneous localisation and mapping (SLAM) algorithm, which simultaneously reconstructs the 3-D map point of environment and estimates the location of a planet UAV based on preexisting digital elevation model (DEM). To directly georeference the onboard UAV images to the digital terrain model, a theoretical model is proposed to prove that topographic features of UAV image and DEM can be correlated in the frequency domain via cross power spectrum. To provide the six-DOF of the UAV, we developed an optimization approach, which fuses the geo-referencing result into an SLAM system via local bundle adjustment (LBA) to achieve robust and accurate vision-based navigation even in featureless planetary areas. To test the robustness and effectiveness of the proposed localization algorithm, a new dataset for planetary drone navigation is proposed based on simulation engine. The proposed dataset includes 40 200 synthetic drone images taken from nine planetary scenes with related DEM query images. Comparison experiments are carried out to demonstrate that over the flight distance of 33.8 km, the proposed method achieved an average localization error of 0.45 m, compared to 1.32 m by ORB-SLAM2 and 0.75 m by ORB-SLAM3, with the processing speed of 12 Hz, which will ensure real-time performance. We will make our datasets available to encourage further work on this topic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
xxl发布了新的文献求助10
1秒前
anlikek发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
FashionBoy应助Lmey采纳,获得10
2秒前
Mine_cherry应助kokenbi采纳,获得30
3秒前
yy关闭了yy文献求助
4秒前
lipengjiajun完成签到,获得积分10
4秒前
Joe应助猪猪hero采纳,获得10
6秒前
wxy2011完成签到 ,获得积分10
6秒前
zy完成签到,获得积分10
7秒前
酥酥发布了新的文献求助10
7秒前
Su发布了新的文献求助10
7秒前
zsg11067完成签到,获得积分20
7秒前
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
爱学习的小李完成签到 ,获得积分10
10秒前
完美世界应助轻松的雪枫采纳,获得10
11秒前
12秒前
辛紫璇发布了新的文献求助10
13秒前
JJJ发布了新的文献求助10
13秒前
洪文发布了新的文献求助10
15秒前
风中的雪发布了新的文献求助10
15秒前
15秒前
hzs发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
Mengqi完成签到,获得积分10
17秒前
18秒前
18秒前
李爱国应助彩色黑米采纳,获得10
18秒前
Akim应助你好呀采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632939
求助须知:如何正确求助?哪些是违规求助? 4728267
关于积分的说明 14984596
捐赠科研通 4790942
什么是DOI,文献DOI怎么找? 2558668
邀请新用户注册赠送积分活动 1519069
关于科研通互助平台的介绍 1479405