EEG-Based Emotion Recognition Using Spatial-Temporal Graph Convolutional LSTM With Attention Mechanism

计算机科学 判别式 脑电图 人工智能 模式识别(心理学) 卷积神经网络 分类器(UML) 图形 邻接表 算法 理论计算机科学 心理学 精神科
作者
Lin Feng,Cheng Cheng,Mingyan Zhao,Huiyuan Deng,Yong Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5406-5417 被引量:103
标识
DOI:10.1109/jbhi.2022.3198688
摘要

The dynamic uncertain relationship among each brain region is a necessary factor that limits EEG-based emotion recognition. It is a thought-provoking problem to availably employ time-varying spatial and temporal characteristics from multi-channel electroencephalogram (EEG) signals. Although deep learning has made remarkable achievements in emotion recognition, the biological topological information among brain regions does not fully exploit, which is vital for EEG-based emotion recognition. In response to this problem, we design a hybrid model called ST-GCLSTM, which comprises a spatial-graph convolutional network (SGCN) module and an attention-enhanced bi-directional Long Short-Term Memory (LSTM) module. The main advantage of ST-GCLSTM is that it can consider the biological topology information of each brain region to extract representative spatial-temporal features from multiple EEG channels. Specifically, we construct two layers SGCN by introducing adjacency matrices to adaptively learn the intrinsic connection among different EEG channels. Moreover, an attention-enhanced mechanism is placed into a bi-directional LSTM module to extract the crucial spatial-temporal features from sequential EEG data, and then these features serve as the input layer of the classifier to learn discriminative emotion-related features. Extensive experiments on the DEAP, SEED, and SEED-IV datasets demonstrate the effectiveness of the proposed ST-GCLSTM model, revealing that our model had an absolute performance improvement over state-of-the-art strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王娜发布了新的文献求助10
刚刚
Demon完成签到,获得积分10
刚刚
刚刚
哈哈发布了新的文献求助10
1秒前
1秒前
xinbowey发布了新的文献求助10
1秒前
2秒前
天真老三完成签到,获得积分10
2秒前
赵小娜完成签到,获得积分20
2秒前
阳光襄完成签到,获得积分10
2秒前
2秒前
上官若男应助啊嘞哇塞采纳,获得10
3秒前
雷小仙儿完成签到,获得积分10
3秒前
早点发SCI完成签到,获得积分10
3秒前
4秒前
4秒前
kingwill应助奥沙利楠采纳,获得20
4秒前
willing-li发布了新的文献求助10
4秒前
4秒前
远方完成签到,获得积分10
5秒前
csm发布了新的文献求助10
5秒前
5秒前
华仔应助小布丁采纳,获得10
6秒前
高手中的糕手完成签到,获得积分10
6秒前
6秒前
Renee完成签到 ,获得积分10
6秒前
受伤芝麻完成签到,获得积分10
6秒前
6秒前
123456完成签到,获得积分20
6秒前
憨憨韩憨憨完成签到,获得积分10
6秒前
xmuchem发布了新的文献求助10
7秒前
欢喜的早晨完成签到,获得积分10
7秒前
7秒前
完美世界应助研友_kng1r8采纳,获得10
8秒前
彩色立辉发布了新的文献求助10
8秒前
8秒前
爆米花应助伊地知虹夏采纳,获得10
8秒前
8秒前
9秒前
大宁完成签到,获得积分10
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5119002
求助须知:如何正确求助?哪些是违规求助? 4324851
关于积分的说明 13474267
捐赠科研通 4158026
什么是DOI,文献DOI怎么找? 2278702
邀请新用户注册赠送积分活动 1280503
关于科研通互助平台的介绍 1219246