EEG-Based Emotion Recognition Using Spatial-Temporal Graph Convolutional LSTM With Attention Mechanism

计算机科学 判别式 脑电图 人工智能 模式识别(心理学) 卷积神经网络 分类器(UML) 图形 邻接表 算法 理论计算机科学 心理学 精神科
作者
Lin Feng,Cheng Cheng,Mi Zhao,Huiyuan Deng,Yong Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5406-5417 被引量:29
标识
DOI:10.1109/jbhi.2022.3198688
摘要

The dynamic uncertain relationship among each brain region is a necessary factor that limits EEG-based emotion recognition. It is a thought-provoking problem to availably employ time-varying spatial and temporal characteristics from multi-channel electroencephalogram (EEG) signals. Although deep learning has made remarkable achievements in emotion recognition, the biological topological information among brain regions does not fully exploit, which is vital for EEG-based emotion recognition. In response to this problem, we design a hybrid model called ST-GCLSTM, which comprises a spatial-graph convolutional network (SGCN) module and an attention-enhanced bi-directional Long Short-Term Memory (LSTM) module. The main advantage of ST-GCLSTM is that it can consider the biological topology information of each brain region to extract representative spatial-temporal features from multiple EEG channels. Specifically, we construct two layers SGCN by introducing adjacency matrices to adaptively learn the intrinsic connection among different EEG channels. Moreover, an attention-enhanced mechanism is placed into a bi-directional LSTM module to extract the crucial spatial-temporal features from sequential EEG data, and then these features serve as the input layer of the classifier to learn discriminative emotion-related features. Extensive experiments on the DEAP, SEED, and SEED-IV datasets demonstrate the effectiveness of the proposed ST-GCLSTM model, revealing that our model had an absolute performance improvement over state-of-the-art strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎明完成签到,获得积分10
刚刚
Orange应助没有逗采纳,获得10
1秒前
wanci应助海豚音521033采纳,获得10
1秒前
000发布了新的文献求助10
2秒前
lyx发布了新的文献求助10
3秒前
花痴的骁完成签到,获得积分10
4秒前
打打应助liangmh采纳,获得10
4秒前
4秒前
深情安青应助次一口8采纳,获得10
5秒前
一人一般完成签到,获得积分10
5秒前
5秒前
LeoYiS214发布了新的文献求助10
6秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
花痴的pumpkin关注了科研通微信公众号
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
CWNU_HAN应助上下采纳,获得30
8秒前
李爱国应助迷路访云采纳,获得10
9秒前
优雅的纸鹤完成签到,获得积分10
9秒前
10秒前
酷酷豪发布了新的文献求助10
12秒前
12秒前
lyx关闭了lyx文献求助
13秒前
14秒前
bkagyin应助王美丽采纳,获得10
15秒前
believe发布了新的文献求助30
16秒前
jj完成签到,获得积分10
16秒前
17秒前
在水一方应助可可西里采纳,获得10
18秒前
liangmh发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149647
求助须知:如何正确求助?哪些是违规求助? 2800710
关于积分的说明 7841396
捐赠科研通 2458270
什么是DOI,文献DOI怎么找? 1308367
科研通“疑难数据库(出版商)”最低求助积分说明 628498
版权声明 601706