EEG-Based Emotion Recognition Using Spatial-Temporal Graph Convolutional LSTM With Attention Mechanism

计算机科学 判别式 脑电图 人工智能 模式识别(心理学) 卷积神经网络 分类器(UML) 图形 邻接表 算法 理论计算机科学 心理学 精神科
作者
Lin Feng,Cheng Cheng,Mingyan Zhao,Huiyuan Deng,Yong Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5406-5417 被引量:103
标识
DOI:10.1109/jbhi.2022.3198688
摘要

The dynamic uncertain relationship among each brain region is a necessary factor that limits EEG-based emotion recognition. It is a thought-provoking problem to availably employ time-varying spatial and temporal characteristics from multi-channel electroencephalogram (EEG) signals. Although deep learning has made remarkable achievements in emotion recognition, the biological topological information among brain regions does not fully exploit, which is vital for EEG-based emotion recognition. In response to this problem, we design a hybrid model called ST-GCLSTM, which comprises a spatial-graph convolutional network (SGCN) module and an attention-enhanced bi-directional Long Short-Term Memory (LSTM) module. The main advantage of ST-GCLSTM is that it can consider the biological topology information of each brain region to extract representative spatial-temporal features from multiple EEG channels. Specifically, we construct two layers SGCN by introducing adjacency matrices to adaptively learn the intrinsic connection among different EEG channels. Moreover, an attention-enhanced mechanism is placed into a bi-directional LSTM module to extract the crucial spatial-temporal features from sequential EEG data, and then these features serve as the input layer of the classifier to learn discriminative emotion-related features. Extensive experiments on the DEAP, SEED, and SEED-IV datasets demonstrate the effectiveness of the proposed ST-GCLSTM model, revealing that our model had an absolute performance improvement over state-of-the-art strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
if发布了新的文献求助10
刚刚
牧歌完成签到,获得积分10
刚刚
于鱼发布了新的文献求助10
刚刚
852应助时丶倾采纳,获得10
1秒前
小包子到处跑完成签到,获得积分10
1秒前
ADDED完成签到,获得积分10
1秒前
2秒前
zrl发布了新的文献求助10
2秒前
4秒前
马格发布了新的文献求助10
4秒前
5秒前
热心夏天发布了新的文献求助10
5秒前
yumi完成签到,获得积分10
6秒前
包容代芹发布了新的文献求助10
6秒前
食杂砸发布了新的文献求助10
7秒前
CipherSage应助zzz采纳,获得10
8秒前
Yasmine完成签到 ,获得积分10
9秒前
MiaoRui完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
丘比特应助if采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
Vivid完成签到,获得积分10
12秒前
时丶倾发布了新的文献求助10
14秒前
14秒前
semigreen完成签到 ,获得积分10
15秒前
木木发布了新的文献求助10
16秒前
夜雨完成签到,获得积分10
16秒前
木木木熙完成签到,获得积分10
16秒前
哈哈哈哈发布了新的文献求助10
16秒前
Lucia完成签到 ,获得积分10
17秒前
18秒前
19秒前
孙颖发布了新的文献求助10
19秒前
seedcode完成签到,获得积分10
19秒前
早睡早起身体好Q完成签到 ,获得积分10
19秒前
田様应助木木采纳,获得10
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858