均方误差
粒子群优化
遗传算法
群体行为
近似误差
锂离子电池
标准差
控制理论(社会学)
计算机科学
电池(电)
生物系统
数学
算法
数学优化
统计
物理
人工智能
功率(物理)
生物
控制(管理)
量子力学
作者
Peng Guo,Xiaobo Wu,António M. Lopes,Anyu Cheng,Yang Xu,Liping Chen
出处
期刊:Mathematics
[MDPI AG]
日期:2022-08-24
卷期号:10 (17): 3056-3056
被引量:2
摘要
This paper proposes a fractional order (FO) impedance model for lithium-ion batteries and a method for model parameter identification. The model is established based on electrochemical impedance spectroscopy (EIS). A new hybrid genetic–fractional beetle swarm optimization (HGA-FBSO) scheme is derived for parameter identification, which combines the advantages of genetic algorithms (GA) and beetle swarm optimization (BSO). The approach leads to an equivalent circuit model being able to describe accurately the dynamic behavior of the lithium-ion battery. Experimental results illustrate the effectiveness of the proposed method, yielding voltage estimation root-mean-squared error (RMSE) of 10.5 mV and mean absolute error (MAE) of 0.6058%. This corresponds to accuracy improvements of 32.26% and 7.89% for the RMSE, and 43.83% and 13.67% for the MAE, when comparing the results of the new approach to those obtained with the GA and the FBSO methods, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI