材料科学
乙烯
膜
离解(化学)
分子识别
金属
密度泛函理论
分子
催化作用
分子动力学
化学物理
石墨烯
纳米技术
化学工程
物理化学
计算化学
有机化学
化学
工程类
冶金
生物化学
作者
Long Cheng,Yanan Guo,Quan Liu,Guozhen Liu,Renhao Li,Xi Chen,Hui Zeng,Gongping Liu,Wanqin Jin
标识
DOI:10.1002/adma.202206349
摘要
Abstract Membranes with nanochannels have exhibited great potential in molecular separations, while it remains a great challenge to separate molecules with very close physical properties and kinetic diameters (e.g., ethylene/ethane) owing to the lack of size‐sieving property and specific affinity. Herein, a metal confined 2D sub‐nanometer channel is reported to successfully discriminate ethylene over ethane via molecular recognition and sieving. Transition metal cations are paired with polyelectrolyte anions to achieve high dissociation activity, forming reversible complexation with ethylene. Aberration‐corrected transmission electron microscopy observes that the metals with size of ≈2 nm are uniformly confined in graphene oxide (GO) interlayer channels with average height of ≈0.44 nm, thereby cooperating the size‐sieving effect with a molecular recognition ability toward ethylene and stimulating its selective transport over ethane. The resulting ultrathin (≈60 nm) membrane exhibits superior ethylene/ethane separation performance far beyond the polymeric upper‐bound. Density functional theory (DFT) and molecular dynamic simulations reveal that the metal@2D interlayer channel provides a molecular recognition pathway for selective gas transport. The proposed metal confined in 2D channel with molecular recognition and sieving properties would have broad application in other related fields such as single‐atom catalysis, sensor and energy conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI