A strategy of fast evaluation for the raw material of Tiepi Fengdou using FT-NIR and ATR-FTIR spectroscopy coupled with chemometrics tools

化学计量学 傅里叶变换红外光谱 原材料 分析化学(期刊) 光谱学 化学 材料科学 色谱法 有机化学 化学工程 工程类 物理 量子力学
作者
Lian Li,Yanli Zhao,Zhimin Li,Yuanzhong Wang
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:123: 103429-103429 被引量:19
标识
DOI:10.1016/j.vibspec.2022.103429
摘要

Tiepi Fengdou, as a precious traditional Chinese medicinal material in China, is a dried product of Dendrobium officinale that holds unique efficacy of nourishing Yin and clearing heat. However, there are many similar species named Fengdou for trade in the herbal market, leading to confusion about the currently commercially available Tiepi Fengdou medicinal materials, which brings great difficulties to the identification and evaluation of raw materials quality of Dendrobium . Therefore, it is necessary to establish a rapid and effective method for D. officinale and other species. In this study, deep learning (DL) models directly combined the two-dimensional correlation spectroscopy (2DCOS) images based on full bands and four characteristic bands of Fourier transform near-infrared (FT-NIR) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy from D. officinale and 9 species of Dendrobium were established, and these identification effect of DL models were optimized and compared. The results show that the separation effect based on the two spectra with second derivative (SD) preprocessing is the best according to different categories via principal component analysis. Then, compared with ATR-FTIR, the DL models of SD full band, 9000–5500 cm −1 and 5250–4100 cm −1 band had absolute advantages to discriminate D. officinale and 9 species of Dendrobium based on FT-NIR. Based on this, the DL model with parameters of 16 bate size and 60 epochs combined with synchronous 2DCOS images is well based on FT-NIR to identify D. officinale and other species of Dendrobium . This method can not only quickly and accurately identify the raw materials ( D. officinale ) of Tiepi Fengdou, but also provide a theoretical basis for extended further research on other fields of medicinal plants or fungi. • An effective method for successfully identifying the raw materials of Tiepi Fengdou and other Dendrobium species. • A superior model of ResNet with parameters of 16 bate size than 32 based on synchronous 2DCOS images. • All bands of FT-NIR were more suitable for discriminating Dendrobium than ATR-FTIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
77完成签到,获得积分20
1秒前
火龙果完成签到,获得积分10
2秒前
4秒前
feitian201861发布了新的文献求助10
4秒前
慕青应助11采纳,获得10
4秒前
5秒前
申燕婷完成签到 ,获得积分10
5秒前
深情的秋白完成签到 ,获得积分10
5秒前
无情思卉发布了新的文献求助10
5秒前
舒适的若云完成签到,获得积分20
6秒前
6秒前
7秒前
7秒前
CipherSage应助马小花花花儿采纳,获得10
7秒前
7秒前
muziyang完成签到,获得积分10
8秒前
星辰发布了新的文献求助10
8秒前
9秒前
充电宝应助LongSun采纳,获得10
9秒前
9秒前
9秒前
10秒前
思源应助啾啾采纳,获得10
10秒前
10秒前
11秒前
奋斗成风发布了新的文献求助10
11秒前
piglit发布了新的文献求助10
12秒前
12秒前
Bellona完成签到,获得积分10
12秒前
早早发布了新的文献求助10
12秒前
小鱼儿发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
13秒前
英勇的寒蕾完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351663
求助须知:如何正确求助?哪些是违规求助? 4484642
关于积分的说明 13959937
捐赠科研通 4384271
什么是DOI,文献DOI怎么找? 2408898
邀请新用户注册赠送积分活动 1401448
关于科研通互助平台的介绍 1374928