A strategy of fast evaluation for the raw material of Tiepi Fengdou using FT-NIR and ATR-FTIR spectroscopy coupled with chemometrics tools

化学计量学 傅里叶变换红外光谱 原材料 分析化学(期刊) 光谱学 化学 材料科学 色谱法 有机化学 化学工程 工程类 物理 量子力学
作者
Lian Li,Yanli Zhao,Zhimin Li,Yuanzhong Wang
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:123: 103429-103429 被引量:9
标识
DOI:10.1016/j.vibspec.2022.103429
摘要

Tiepi Fengdou, as a precious traditional Chinese medicinal material in China, is a dried product of Dendrobium officinale that holds unique efficacy of nourishing Yin and clearing heat. However, there are many similar species named Fengdou for trade in the herbal market, leading to confusion about the currently commercially available Tiepi Fengdou medicinal materials, which brings great difficulties to the identification and evaluation of raw materials quality of Dendrobium . Therefore, it is necessary to establish a rapid and effective method for D. officinale and other species. In this study, deep learning (DL) models directly combined the two-dimensional correlation spectroscopy (2DCOS) images based on full bands and four characteristic bands of Fourier transform near-infrared (FT-NIR) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy from D. officinale and 9 species of Dendrobium were established, and these identification effect of DL models were optimized and compared. The results show that the separation effect based on the two spectra with second derivative (SD) preprocessing is the best according to different categories via principal component analysis. Then, compared with ATR-FTIR, the DL models of SD full band, 9000–5500 cm −1 and 5250–4100 cm −1 band had absolute advantages to discriminate D. officinale and 9 species of Dendrobium based on FT-NIR. Based on this, the DL model with parameters of 16 bate size and 60 epochs combined with synchronous 2DCOS images is well based on FT-NIR to identify D. officinale and other species of Dendrobium . This method can not only quickly and accurately identify the raw materials ( D. officinale ) of Tiepi Fengdou, but also provide a theoretical basis for extended further research on other fields of medicinal plants or fungi. • An effective method for successfully identifying the raw materials of Tiepi Fengdou and other Dendrobium species. • A superior model of ResNet with parameters of 16 bate size than 32 based on synchronous 2DCOS images. • All bands of FT-NIR were more suitable for discriminating Dendrobium than ATR-FTIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QYY完成签到,获得积分10
刚刚
Yuuuu完成签到 ,获得积分10
1秒前
Yasmine发布了新的文献求助10
1秒前
rubywoojennie发布了新的文献求助10
1秒前
慈祥的香魔完成签到,获得积分20
2秒前
zxx完成签到,获得积分10
2秒前
柳易槐完成签到,获得积分10
2秒前
张颖完成签到 ,获得积分10
2秒前
2秒前
3秒前
LIU完成签到,获得积分10
3秒前
3秒前
Lily完成签到,获得积分10
4秒前
朴实天寿应助欣喜大地采纳,获得20
4秒前
小诗姐姐完成签到,获得积分10
4秒前
caltrate515完成签到,获得积分10
4秒前
caleb发布了新的文献求助10
4秒前
鳗鱼板栗完成签到 ,获得积分10
5秒前
翊星完成签到,获得积分10
6秒前
CipherSage应助李sir采纳,获得10
7秒前
7秒前
chenyan完成签到,获得积分10
7秒前
ggyy发布了新的文献求助10
7秒前
彭于彦祖应助百十余采纳,获得30
8秒前
YMY发布了新的文献求助10
8秒前
见闻完成签到,获得积分10
9秒前
WangYanjie发布了新的文献求助10
9秒前
武雨珍发布了新的文献求助30
9秒前
zaaa完成签到,获得积分10
9秒前
Wilson发布了新的文献求助30
9秒前
9秒前
格非完成签到,获得积分10
9秒前
10秒前
韩钰小宝完成签到,获得积分10
11秒前
12秒前
Xiao风啊发布了新的文献求助10
12秒前
赵佳璐完成签到,获得积分10
12秒前
君君欧发布了新的文献求助10
13秒前
英姑应助xiao采纳,获得10
13秒前
康康星完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147171
求助须知:如何正确求助?哪些是违规求助? 2798462
关于积分的说明 7829305
捐赠科研通 2455179
什么是DOI,文献DOI怎么找? 1306639
科研通“疑难数据库(出版商)”最低求助积分说明 627858
版权声明 601567