A strategy of fast evaluation for the raw material of Tiepi Fengdou using FT-NIR and ATR-FTIR spectroscopy coupled with chemometrics tools

化学计量学 傅里叶变换红外光谱 原材料 分析化学(期刊) 光谱学 化学 材料科学 色谱法 有机化学 化学工程 工程类 物理 量子力学
作者
Lian Li,Yanli Zhao,Zhimin Li,Yuanzhong Wang
出处
期刊:Vibrational Spectroscopy [Elsevier BV]
卷期号:123: 103429-103429 被引量:16
标识
DOI:10.1016/j.vibspec.2022.103429
摘要

Tiepi Fengdou, as a precious traditional Chinese medicinal material in China, is a dried product of Dendrobium officinale that holds unique efficacy of nourishing Yin and clearing heat. However, there are many similar species named Fengdou for trade in the herbal market, leading to confusion about the currently commercially available Tiepi Fengdou medicinal materials, which brings great difficulties to the identification and evaluation of raw materials quality of Dendrobium . Therefore, it is necessary to establish a rapid and effective method for D. officinale and other species. In this study, deep learning (DL) models directly combined the two-dimensional correlation spectroscopy (2DCOS) images based on full bands and four characteristic bands of Fourier transform near-infrared (FT-NIR) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy from D. officinale and 9 species of Dendrobium were established, and these identification effect of DL models were optimized and compared. The results show that the separation effect based on the two spectra with second derivative (SD) preprocessing is the best according to different categories via principal component analysis. Then, compared with ATR-FTIR, the DL models of SD full band, 9000–5500 cm −1 and 5250–4100 cm −1 band had absolute advantages to discriminate D. officinale and 9 species of Dendrobium based on FT-NIR. Based on this, the DL model with parameters of 16 bate size and 60 epochs combined with synchronous 2DCOS images is well based on FT-NIR to identify D. officinale and other species of Dendrobium . This method can not only quickly and accurately identify the raw materials ( D. officinale ) of Tiepi Fengdou, but also provide a theoretical basis for extended further research on other fields of medicinal plants or fungi. • An effective method for successfully identifying the raw materials of Tiepi Fengdou and other Dendrobium species. • A superior model of ResNet with parameters of 16 bate size than 32 based on synchronous 2DCOS images. • All bands of FT-NIR were more suitable for discriminating Dendrobium than ATR-FTIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
walu发布了新的文献求助20
刚刚
丁浩伦应助小火锅采纳,获得10
刚刚
QQ发布了新的文献求助10
1秒前
Hazel发布了新的文献求助10
3秒前
11111完成签到,获得积分10
3秒前
小蘑菇应助颜林林采纳,获得10
3秒前
小马完成签到,获得积分10
4秒前
顾矜应助科研通管家采纳,获得10
5秒前
不想干活应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
6秒前
不想干活应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
Zz应助科研通管家采纳,获得10
6秒前
不想干活应助科研通管家采纳,获得10
6秒前
不想干活应助科研通管家采纳,获得30
6秒前
科研通AI6应助madmax采纳,获得30
6秒前
6秒前
不想干活应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
monitor完成签到,获得积分20
6秒前
6秒前
852应助科研通管家采纳,获得10
7秒前
fifteen应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
活泼的问旋完成签到,获得积分10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
小蘑菇应助一见喜采纳,获得10
9秒前
9秒前
烟花应助Hohaha采纳,获得10
9秒前
10秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888