亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A two-stage scheduling method for integrated community energy system based on a hybrid mechanism and data-driven model

调度(生产过程) 计算机科学 高效能源利用 数学优化 实时计算 工程类 电气工程 数学
作者
Yunfei Mu,Yurui Xu,Yan Cao,Wanqing Chen,Hongjie Jia,Xiaodan Yu,Xiaolong Jin
出处
期刊:Applied Energy [Elsevier]
卷期号:323: 119683-119683 被引量:11
标识
DOI:10.1016/j.apenergy.2022.119683
摘要

The integrated community energy system (ICES) is an effective means to promote the synergies among multiple energy carriers. However, the off-design performance of equipment challenges the accurate and economical scheduling of the ICES. To solve this problem, a two-stage scheduling method for the ICES based on a hybrid mechanism and data-driven model is proposed in this paper. Combing the mechanism energy hub (EH) model with a data-driven efficiency correction model, a hybrid-driven dynamic energy hub (DEH) with variable equipment efficiency is built first. The EH describes the multi-energy coupling relationship; the embedded efficiency correction model adopts data-driven approaches of polynomial regression (PR) and backpropagation neural networks (BPNNs) to accurately extract nonlinear characteristics of equipment efficiency. On this basis, a two-stage scheduling model for the ICES is developed. In the day-ahead stage, the PR method is applied to calculate equipment efficiency which varies with load rate. The day-ahead scheduling model is established with the aim of minimizing the operating cost. In the intraday stage, considering the effects of load rate, temperature, and atmospheric pressure, the BPNNs method is employed to further correct equipment efficiency using the latest data. Furthermore, a rolling optimization (RO) strategy is used to address the uncertainties of equipment efficiency and load demand to improve the accuracy and economy of the scheduling scheme. Case studies demonstrate that the proposed method can improve the solution speed and accuracy of the scheduling model, and enhance the operating economy of the ICES.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
14秒前
落骛发布了新的文献求助10
17秒前
雪生在无人荒野完成签到,获得积分10
24秒前
35秒前
ddz发布了新的文献求助10
49秒前
Demi_Ming完成签到,获得积分10
49秒前
科研通AI2S应助Ade阿德采纳,获得10
50秒前
1分钟前
Ade阿德发布了新的文献求助10
1分钟前
1分钟前
crane发布了新的文献求助10
1分钟前
iii完成签到 ,获得积分10
1分钟前
SYLH应助李雷采纳,获得10
1分钟前
1分钟前
顾矜应助Ade阿德采纳,获得10
1分钟前
2分钟前
Ade阿德发布了新的文献求助10
2分钟前
李健的小迷弟应助Ade阿德采纳,获得10
2分钟前
战神林北完成签到,获得积分10
2分钟前
2分钟前
yuery发布了新的文献求助10
2分钟前
慕青应助李雷采纳,获得10
2分钟前
catyew完成签到 ,获得积分10
2分钟前
yuery完成签到,获得积分10
2分钟前
3分钟前
阿靖发布了新的文献求助10
3分钟前
无花果应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
简单松鼠发布了新的文献求助10
3分钟前
3分钟前
星辰大海应助邬代桃采纳,获得30
3分钟前
3分钟前
樱铃发布了新的文献求助10
3分钟前
慕青应助康康XY采纳,获得10
3分钟前
子平完成签到 ,获得积分10
3分钟前
3分钟前
邬代桃发布了新的文献求助30
3分钟前
Qingyong21应助Guozixin采纳,获得30
3分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471404
求助须知:如何正确求助?哪些是违规求助? 3064459
关于积分的说明 9088176
捐赠科研通 2755113
什么是DOI,文献DOI怎么找? 1511775
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698460