The Fatigue-Creep Coupling Effect of Asphalt-Mixture Damage Model under Different Loading Frequencies

蠕动 材料科学 复合材料 极限抗拉强度 张力(地质) 压缩(物理) 压力(语言学) 联轴节(管道) 沥青 叠加原理 结构工程 语言学 量子力学 物理 工程类 哲学
作者
Huanan Yu,Hao Hu,Xuan Zhu,Guoping Qian,Chao Zhang,Yao Ding,Ping Li
出处
期刊:Journal of Materials in Civil Engineering [American Society of Civil Engineers]
卷期号:35 (2) 被引量:5
标识
DOI:10.1061/(asce)mt.1943-5533.0004585
摘要

To evaluate the fatigue-creep damage coupling effect of asphalt mixture under different loading frequencies, three tests—tension-compression fatigue, direct tensile fatigue, and static creep—were carried out with haversine cyclic loading at four loading frequencies of 5, 10, 20, and 50 Hz, respectively. In this research, the elastic modulus was selected as a damage variable for evaluation, and the evolution of fatigue damage and creep damage was analyzed by the Chaboche model and the Kachanov model, respectively. Then, based on haversine fatigue stress decomposition, tension-compression fatigue damage, direct tension fatigue damage, and creep damage under four loading frequencies were compared, and the fatigue-creep damage coupling model under those loading frequencies was established. The results indicated that, with the increase in loading frequency, the corresponding damage under the same standardized coordinate decreased, the growth rate of the damage evolution curve decreased, and the damage increased more rapidly when the asphalt mixture was damaged. It was found that the direct tensile fatigue damage of the asphalt mixture under repeated loads was not the direct superposition of pure fatigue and pure creep damage, but a coupling effect of fatigue-creep damage. In the direct tensile fatigue tests, the fatigue-creep damage coupling effect was negative and during the coupling effect the creep effect was more obvious. The model proposed in this result can better characterize the fatigue-creep damage coupling effect and damage evolution process of asphalt mixtures under different loading frequencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHINA_C13发布了新的文献求助10
刚刚
Mars发布了新的文献求助10
1秒前
哈哈哈完成签到,获得积分10
1秒前
玛卡巴卡应助平常的毛豆采纳,获得100
2秒前
默默的青旋完成签到,获得积分10
3秒前
6秒前
搜集达人应助淡淡采白采纳,获得10
6秒前
高高代珊完成签到 ,获得积分10
7秒前
gmc发布了新的文献求助10
8秒前
8秒前
9秒前
善学以致用应助Mian采纳,获得10
9秒前
学科共进发布了新的文献求助60
10秒前
LWJ完成签到 ,获得积分10
10秒前
10秒前
缓慢的糖豆完成签到,获得积分10
11秒前
阉太狼完成签到,获得积分10
11秒前
12秒前
soory完成签到,获得积分10
13秒前
任性的傲柏完成签到,获得积分10
13秒前
lwk205完成签到,获得积分0
13秒前
14秒前
一一完成签到,获得积分10
14秒前
14秒前
14秒前
高中生完成签到,获得积分10
15秒前
15秒前
15秒前
希望天下0贩的0应助TT采纳,获得10
16秒前
xxegt完成签到 ,获得积分10
16秒前
17秒前
爱吃泡芙发布了新的文献求助10
17秒前
susu完成签到,获得积分10
19秒前
会神发布了新的文献求助10
19秒前
KK完成签到,获得积分10
20秒前
充电宝应助justin采纳,获得10
22秒前
23秒前
Ch完成签到 ,获得积分10
24秒前
26秒前
ajun完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824