Task-balanced distillation for object detection

计算机科学 人工智能 蒸馏 任务(项目管理) 一般化 回归 机器学习 模式识别(心理学) 对象(语法) 目标检测 分类器(UML) 数学 统计 经济 数学分析 有机化学 化学 管理
作者
Ruining Tang,Zhenyu Liu,Yangguang Li,Yiguo Song,Hui Liu,Qide Wang,Jing Shao,Guifang Duan,Jianrong Tan
出处
期刊:Pattern Recognition [Elsevier]
卷期号:137: 109320-109320 被引量:19
标识
DOI:10.1016/j.patcog.2023.109320
摘要

Mainstream object detectors are commonly constituted of two sub-tasks, including classification and regression tasks, implemented by two parallel heads. This classic design paradigm inevitably leads to inconsistent spatial distributions between classification score and localization quality (IOU). Therefore, this paper alleviates this misalignment in the view of knowledge distillation. First, we observe that the massive teacher achieves a higher proportion of harmonious predictions than the lightweight student. Based on this intriguing observation, a novel Harmony Score (HS) is devised to estimate the alignment of classification and regression qualities. HS models the relationship between two sub-tasks and is seen as prior knowledge to promote harmonious predictions for the student. Second, this spatial misalignment will result in inharmonious region selection when distilling features. To alleviate this problem, a novel Task-decoupled Feature Distillation (TFD) is proposed by flexibly balancing the contributions of classification and regression tasks. Eventually, HD and TFD constitute the proposed method, named Task-Balanced Distillation (TBD). Extensive experiments demonstrate the considerable potential and generalization of the proposed method. Notably, when equipped with TBD, the performances of RetinaNet-R18/RetinaNet-R50/Faster-RCNN-R18 can be boosted from 33.2/37.4/34.5 to 37.3/41.2/37.7, outperforming the recent KD-based methods like FRS, FGD, and MGD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
应应发布了新的文献求助10
刚刚
刚刚
HHH完成签到,获得积分10
1秒前
Archer发布了新的文献求助10
1秒前
YzUCC发布了新的文献求助10
2秒前
木刻青、发布了新的文献求助10
2秒前
善学以致用应助S_pingan采纳,获得10
3秒前
默默书竹完成签到,获得积分10
5秒前
5秒前
Demo关注了科研通微信公众号
6秒前
6秒前
7秒前
deansy完成签到,获得积分10
7秒前
ABC发布了新的文献求助10
7秒前
优秀妙芹完成签到 ,获得积分10
7秒前
8秒前
changaipei发布了新的文献求助10
8秒前
8秒前
8秒前
冲鸭发布了新的文献求助10
8秒前
8秒前
10秒前
Lesile发布了新的文献求助10
11秒前
11秒前
11秒前
洪对对完成签到 ,获得积分10
13秒前
张凡完成签到 ,获得积分10
14秒前
Shang发布了新的文献求助10
14秒前
miles发布了新的文献求助10
15秒前
上官若男应助ABC采纳,获得10
16秒前
YZC完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
结实青文发布了新的文献求助10
17秒前
19秒前
KevinYou完成签到,获得积分10
20秒前
酷波er应助盛夏采纳,获得10
21秒前
鲸落完成签到,获得积分10
22秒前
honerchin发布了新的文献求助10
22秒前
SmileLin发布了新的文献求助10
23秒前
23秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583573
求助须知:如何正确求助?哪些是违规求助? 4667363
关于积分的说明 14766995
捐赠科研通 4609622
什么是DOI,文献DOI怎么找? 2529351
邀请新用户注册赠送积分活动 1498473
关于科研通互助平台的介绍 1467170