物理
标量(数学)
传递矩阵
转化(遗传学)
基质(化学分析)
数学分析
波动方程
微分方程
非线性系统
振幅
光学
量子力学
数学
计算机科学
几何学
生物化学
基因
复合材料
化学
材料科学
计算机视觉
作者
Stefanos Fr. Koufidis,Martin W. McCall
出处
期刊:Physical review
[American Physical Society]
日期:2022-12-19
卷期号:106 (6)
被引量:8
标识
DOI:10.1103/physreva.106.062213
摘要
A M\"obius transformation which conformally maps the unit circle onto itself is applied to the scalar coupled-wave equations, describing electromagnetic wave propagation in Bragg gratings, and reduces them to a first-order nonlinear differential equation of a single real variable. This equation is analytically integrated for linear detuning and numerically for more complicated refractive index modulation scenarios, e.g., chirped and apodized Bragg gratings, offering a platform for identifying both the amplitude and phase of all elements of the transfer matrix of arbitrarily complex cases. A link between coupled-wave theory and coupled oscillators is established, and exploring the transformation's geometrical properties leads to alternative definitions of the photonic band gap.
科研通智能强力驱动
Strongly Powered by AbleSci AI