亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling and Evaluation of the Permeate Flux in Forward Osmosis Process with Machine Learning

支持向量机 均方误差 人工神经网络 正渗透 计算机科学 遗传算法 人工智能 机器学习 算法 数学 统计 化学 反渗透 生物化学
作者
Fengming Shi,Shang Lu,Jinglian Gu,Jiuyang Lin,Chengxi Zhao,Xinqiang You,Xiaocheng Lin
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:61 (49): 18045-18056 被引量:1
标识
DOI:10.1021/acs.iecr.2c03064
摘要

Predicting the permeate flux is critical for evaluating and optimizing the performance of the forward osmosis (FO) process. However, the solution diffusion models have poor applicability in accessing the FO process. Recently, the data-driven eXtreme Gradient Boosting (XGBoost) algorithm has been proven to be effective in processing structure data in engineering problems and has not been utilized to assess the FO process. Herein, a combination of the XGBoost model with a genetic algorithm (GA) was first proposed to predict the permeate flux, highlighting its superiority in the FO process through comparison of the support vector regression (SVR) model, the artificial neural network (ANN), and the multiple linear regression (MLR). Moreover, the performance of these models was optimized by tuning hyperparameters with a genetic algorithm (GA) and compared via Taylor Diagram. Among these machine learning (ML) models, the GA-based XGBoost model is superior to the other three models in terms of mean square error (MSE, 2.7326) and coefficient of determination (R2, 0.9721) on the test data, and its prediction power was compared to that of the solution diffusion (SD) model in the literature. Finally, further insight into the feature importance that affects the permeate flux in the FO process was examined by utilizing the SHapley Additive exPlanations (SHAP) to estimate the contribution value of various variables. The results demonstrated that the XGBoost model could predict the permeate flux in the FO system with high accuracy and good generalization ability for the given data set and even on the unseen data. Furthermore, the findings of the SHAP method show that the osmotic pressure difference, the osmotic pressure difference of draw solution and FS solution, the crossflow velocity of the feed solution and draw solution, and the water permeability coefficient have a significant impact on water flux.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易殇发布了新的文献求助30
4秒前
8秒前
QQ发布了新的文献求助10
8秒前
李健的小迷弟应助高强采纳,获得10
8秒前
Wang完成签到,获得积分10
9秒前
ling361完成签到,获得积分10
10秒前
10秒前
碳酸芙兰完成签到,获得积分10
14秒前
14秒前
高强完成签到,获得积分10
16秒前
小二郎应助科研通管家采纳,获得10
17秒前
卷卷完成签到 ,获得积分10
18秒前
高强发布了新的文献求助10
19秒前
易殇完成签到,获得积分20
20秒前
思源应助科研小白采纳,获得10
21秒前
23秒前
YOLO完成签到 ,获得积分10
25秒前
华仔应助adfadf采纳,获得10
27秒前
28秒前
28秒前
choyng完成签到,获得积分10
28秒前
choyng发布了新的文献求助30
32秒前
QQ完成签到,获得积分20
32秒前
33秒前
科研小白发布了新的文献求助10
36秒前
37秒前
adfadf发布了新的文献求助10
41秒前
43秒前
xiong完成签到 ,获得积分10
43秒前
长情黄蜂发布了新的文献求助10
47秒前
51秒前
1分钟前
狼啸天应助Hu采纳,获得10
1分钟前
1分钟前
vicky发布了新的文献求助10
1分钟前
1分钟前
努力的扣扣酱完成签到 ,获得积分10
1分钟前
眯眯眼的黎昕完成签到 ,获得积分10
1分钟前
可爱的函函应助vicky采纳,获得10
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135474
关于积分的说明 9412362
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728442
科研通“疑难数据库(出版商)”最低求助积分说明 716832