亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CapsNet-LDA: predicting lncRNA-disease associations using attention mechanism and capsule network based on multi-view data

计算机科学 卷积神经网络 稳健性(进化) 人工智能 模式识别(心理学) 自编码 联营 水准点(测量) 机器学习 人工神经网络 大地测量学 生物化学 基因 化学 地理
作者
Zequn Zhang,Junlin Xu,Yikang Wu,Niannian Liu,Yinglong Wang,Ying Liang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:11
标识
DOI:10.1093/bib/bbac531
摘要

Cumulative studies have shown that many long non-coding RNAs (lncRNAs) are crucial in a number of diseases. Predicting potential lncRNA-disease associations (LDAs) can facilitate disease prevention, diagnosis and treatment. Therefore, it is vital to develop practical computational methods for LDA prediction. In this study, we propose a novel predictor named capsule network (CapsNet)-LDA for LDA prediction. CapsNet-LDA first uses a stacked autoencoder for acquiring the informative low-dimensional representations of the lncRNA-disease pairs under multiple views, then the attention mechanism is leveraged to implement an adaptive allocation of importance weights to them, and they are subsequently processed using a CapsNet-based architecture for predicting LDAs. Different from the conventional convolutional neural networks (CNNs) that have some restrictions with the usage of scalar neurons and pooling operations. the CapsNets use vector neurons instead of scalar neurons that have better robustness for the complex combination of features and they use dynamic routing processes for updating parameters. CapsNet-LDA is superior to other five state-of-the-art models on four benchmark datasets, four perturbed datasets and an independent test set in the comparison experiments, demonstrating that CapsNet-LDA has excellent performance and robustness against perturbation, as well as good generalization ability. The ablation studies verify the effectiveness of some modules of CapsNet-LDA. Moreover, the ability of multi-view data to improve performance is proven. Case studies further indicate that CapsNet-LDA can accurately predict novel LDAs for specific diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄音完成签到,获得积分10
26秒前
汉堡包应助通义千问采纳,获得10
1分钟前
隐形曼青应助小米辣采纳,获得30
1分钟前
2分钟前
通义千问发布了新的文献求助10
2分钟前
柔弱藏今发布了新的文献求助10
2分钟前
小米辣完成签到,获得积分10
2分钟前
2分钟前
吃了就会胖完成签到 ,获得积分10
3分钟前
小米辣发布了新的文献求助30
3分钟前
dream完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
丫子天空发布了新的文献求助10
3分钟前
3分钟前
lzxbarry应助andrele采纳,获得30
3分钟前
燕子完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
呆萌的鼠标完成签到 ,获得积分0
5分钟前
5分钟前
似水无痕完成签到,获得积分10
5分钟前
Anto完成签到,获得积分10
5分钟前
kuoping完成签到,获得积分0
5分钟前
李健应助科研通管家采纳,获得10
5分钟前
丫子天空完成签到,获得积分20
6分钟前
QCB完成签到 ,获得积分10
6分钟前
wodetaiyangLLL完成签到 ,获得积分10
6分钟前
科研通AI5应助彭日晓采纳,获得10
6分钟前
ZHANG完成签到 ,获得积分10
7分钟前
tenta完成签到,获得积分10
7分钟前
7分钟前
7分钟前
8分钟前
千里草完成签到,获得积分10
8分钟前
彭日晓发布了新的文献求助10
8分钟前
significant发布了新的文献求助10
8分钟前
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569068
求助须知:如何正确求助?哪些是违规求助? 3991392
关于积分的说明 12355756
捐赠科研通 3663569
什么是DOI,文献DOI怎么找? 2019007
邀请新用户注册赠送积分活动 1053435
科研通“疑难数据库(出版商)”最低求助积分说明 940978