CapsNet-LDA: predicting lncRNA-disease associations using attention mechanism and capsule network based on multi-view data

计算机科学 卷积神经网络 稳健性(进化) 人工智能 模式识别(心理学) 自编码 联营 水准点(测量) 机器学习 人工神经网络 大地测量学 生物化学 基因 化学 地理
作者
Zequn Zhang,Junlin Xu,Yikang Wu,Niannian Liu,Yinglong Wang,Ying Liang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:11
标识
DOI:10.1093/bib/bbac531
摘要

Cumulative studies have shown that many long non-coding RNAs (lncRNAs) are crucial in a number of diseases. Predicting potential lncRNA-disease associations (LDAs) can facilitate disease prevention, diagnosis and treatment. Therefore, it is vital to develop practical computational methods for LDA prediction. In this study, we propose a novel predictor named capsule network (CapsNet)-LDA for LDA prediction. CapsNet-LDA first uses a stacked autoencoder for acquiring the informative low-dimensional representations of the lncRNA-disease pairs under multiple views, then the attention mechanism is leveraged to implement an adaptive allocation of importance weights to them, and they are subsequently processed using a CapsNet-based architecture for predicting LDAs. Different from the conventional convolutional neural networks (CNNs) that have some restrictions with the usage of scalar neurons and pooling operations. the CapsNets use vector neurons instead of scalar neurons that have better robustness for the complex combination of features and they use dynamic routing processes for updating parameters. CapsNet-LDA is superior to other five state-of-the-art models on four benchmark datasets, four perturbed datasets and an independent test set in the comparison experiments, demonstrating that CapsNet-LDA has excellent performance and robustness against perturbation, as well as good generalization ability. The ablation studies verify the effectiveness of some modules of CapsNet-LDA. Moreover, the ability of multi-view data to improve performance is proven. Case studies further indicate that CapsNet-LDA can accurately predict novel LDAs for specific diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘溢完成签到,获得积分20
1秒前
斯文败类应助bdJ采纳,获得10
1秒前
慕青应助pzh采纳,获得10
1秒前
科研通AI6应助Sky采纳,获得30
2秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
7秒前
8秒前
青草蛋糕完成签到 ,获得积分10
9秒前
复杂储发布了新的文献求助10
9秒前
MCst发布了新的文献求助10
10秒前
芝士发布了新的文献求助10
11秒前
11秒前
shuaige完成签到,获得积分20
11秒前
linjunqi发布了新的文献求助10
11秒前
李健应助着急的青枫采纳,获得10
11秒前
12秒前
明越发布了新的文献求助10
12秒前
陈美宏完成签到,获得积分10
12秒前
坦率灵槐应助小白脸采纳,获得10
12秒前
Lilly完成签到,获得积分10
12秒前
yshog完成签到,获得积分10
12秒前
13秒前
13秒前
吉安娜完成签到,获得积分10
13秒前
14秒前
pzh发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
小马甲应助阔达宝莹采纳,获得10
16秒前
lhlhl发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683