CapsNet-LDA: predicting lncRNA-disease associations using attention mechanism and capsule network based on multi-view data

计算机科学 卷积神经网络 稳健性(进化) 人工智能 模式识别(心理学) 自编码 联营 水准点(测量) 机器学习 人工神经网络 大地测量学 生物化学 基因 化学 地理
作者
Zequn Zhang,Junlin Xu,Yikang Wu,Niannian Liu,Yinglong Wang,Ying Liang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:11
标识
DOI:10.1093/bib/bbac531
摘要

Cumulative studies have shown that many long non-coding RNAs (lncRNAs) are crucial in a number of diseases. Predicting potential lncRNA-disease associations (LDAs) can facilitate disease prevention, diagnosis and treatment. Therefore, it is vital to develop practical computational methods for LDA prediction. In this study, we propose a novel predictor named capsule network (CapsNet)-LDA for LDA prediction. CapsNet-LDA first uses a stacked autoencoder for acquiring the informative low-dimensional representations of the lncRNA-disease pairs under multiple views, then the attention mechanism is leveraged to implement an adaptive allocation of importance weights to them, and they are subsequently processed using a CapsNet-based architecture for predicting LDAs. Different from the conventional convolutional neural networks (CNNs) that have some restrictions with the usage of scalar neurons and pooling operations. the CapsNets use vector neurons instead of scalar neurons that have better robustness for the complex combination of features and they use dynamic routing processes for updating parameters. CapsNet-LDA is superior to other five state-of-the-art models on four benchmark datasets, four perturbed datasets and an independent test set in the comparison experiments, demonstrating that CapsNet-LDA has excellent performance and robustness against perturbation, as well as good generalization ability. The ablation studies verify the effectiveness of some modules of CapsNet-LDA. Moreover, the ability of multi-view data to improve performance is proven. Case studies further indicate that CapsNet-LDA can accurately predict novel LDAs for specific diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rh1006发布了新的文献求助10
2秒前
深情安青应助机智的水杯采纳,获得10
2秒前
WJ完成签到,获得积分10
4秒前
李爱国应助lp采纳,获得10
8秒前
lzp完成签到 ,获得积分10
10秒前
Mss完成签到,获得积分20
10秒前
sptyzl完成签到 ,获得积分10
11秒前
HY完成签到,获得积分10
13秒前
赛因斯完成签到,获得积分10
13秒前
刻苦冰颜完成签到,获得积分10
15秒前
16秒前
16秒前
Ava应助ZZZ采纳,获得10
18秒前
嗯对完成签到 ,获得积分10
20秒前
凉的白开完成签到,获得积分10
24秒前
zbh完成签到,获得积分10
26秒前
神揽星辰入梦完成签到,获得积分10
26秒前
七月完成签到,获得积分10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
陌疑应助科研通管家采纳,获得10
27秒前
今后应助科研通管家采纳,获得10
27秒前
共享精神应助科研通管家采纳,获得10
27秒前
李健应助科研通管家采纳,获得10
27秒前
传奇3应助科研通管家采纳,获得10
27秒前
香蕉觅云应助科研通管家采纳,获得10
27秒前
28秒前
28秒前
28秒前
脑洞疼应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
28秒前
29秒前
同學你該吃藥了完成签到 ,获得积分10
30秒前
32秒前
俏皮的飞柏完成签到,获得积分10
33秒前
斯文败类应助研路漫漫采纳,获得10
33秒前
lp发布了新的文献求助20
34秒前
huyz发布了新的文献求助10
35秒前
慈祥的花瓣完成签到,获得积分10
36秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343