Wildfire detection through deep learning based on Himawari-8 satellites platform

地球静止轨道 计算机科学 卫星 遥感 卷积神经网络 深度学习 聚类分析 卫星图像 人工智能 鉴定(生物学) 地球静止运行环境卫星 环境科学 气象学 地质学 地理 生物 植物 工程类 航空航天工程
作者
Changcheng Ding,Xiaoyu Zhang,Jianyu Chen,Shuchang Ma,Yujun Lu,Weili Han
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:43 (13): 5040-5058 被引量:8
标识
DOI:10.1080/01431161.2022.2119110
摘要

The accurate identification of the location, intensity, and spread of wildfires is an essential early-stage precaution for reducing wildfire damage. Satellite imaging platforms, particularly those with high revisiting frequencies and fine spatial resolutions, represent the most efficient possible means of monitoring wildfires dynamically. However, the extraction of accurate fire-related information from satellite images remains challenging, and few studies have investigated the use of remote sensing data from satellites with geostationary orbits. The present work addresses these issues by applying over 5,000 images obtained from the geostationary Himawari-8 satellite of a severe Australian wildfire occurring from November 2019 to February 2020 to train and test a fully connected convolutional neural network (CNN) for identifying the location and intensity of wildfires. The proposed CNN model obtains a detection accuracy greater than 80%, which greatly exceeds that of other machine learning algorithms, such as support vector machine and k-means clustering. Moreover, the CNN model can be trained in a relatively short period, even when employing large training datasets, and predictions can be made in just one or two minutes. The proposed model provides insight into the application of deep learning methodologies for wildfire monitoring based on the imagery provided by geostationary satellites, and support for developing similar satellite missions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大虫完成签到,获得积分10
1秒前
善学以致用应助LYN采纳,获得10
1秒前
1秒前
1秒前
机灵夏云完成签到,获得积分10
1秒前
搜集达人应助lbjkzj采纳,获得10
2秒前
乐乐应助weiqimin采纳,获得10
2秒前
可爱的深巷完成签到,获得积分10
3秒前
euphoria发布了新的文献求助10
4秒前
wanjingwan发布了新的文献求助10
4秒前
牛牛发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
6秒前
小王同志完成签到,获得积分10
6秒前
如意的白云完成签到,获得积分20
6秒前
abc完成签到,获得积分10
6秒前
jiyang应助飘逸的蚂蚁采纳,获得10
7秒前
在水一方应助study采纳,获得10
8秒前
淙淙完成签到,获得积分10
8秒前
欢呼的鲂完成签到,获得积分10
8秒前
香蕉觅云应助zzzzzz采纳,获得10
8秒前
Akim应助Vizz采纳,获得10
8秒前
8秒前
my完成签到,获得积分10
9秒前
holland完成签到 ,获得积分10
9秒前
goodesBright应助Calor采纳,获得30
10秒前
啦啦啦啦啦完成签到,获得积分10
10秒前
wu完成签到,获得积分20
10秒前
10秒前
10秒前
在水一方应助scl采纳,获得10
10秒前
10秒前
11秒前
11秒前
dandan完成签到,获得积分10
11秒前
火星上的灵竹完成签到,获得积分10
11秒前
12秒前
共享精神应助兴奋曼香采纳,获得10
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167852
求助须知:如何正确求助?哪些是违规求助? 2819220
关于积分的说明 7925634
捐赠科研通 2479112
什么是DOI,文献DOI怎么找? 1320642
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443