Educational Process Mining for Discovering Students' Problem-Solving Ability in Computer Programming Education

计算机科学 过程(计算) 人工智能 Boosting(机器学习) 决策树 机器学习 过程采矿 基于问题的学习 结果(博弈论) 计算机程序设计 编码(社会科学) 数学教育 在制品 操作系统 统计 业务流程 业务 数理经济学 数学 营销 业务流程建模
作者
Fang Liu,Liang Zhao,Jiayi Zhao,Qin Dai,Chunlong Fan,Jun Shen
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:15 (6): 709-719 被引量:5
标识
DOI:10.1109/tlt.2022.3216276
摘要

Educational process mining is now a promising method to provide decision-support information for the teaching–learning process via finding useful educational guidance from the event logs recorded in the learning management system. Existing studies mainly focus on mining students' problem-solving skills or behavior patterns and intervening in students' learning processes according to this information in the late course. However, educators often expect to improve the learning outcome in a proactive manner through dynamically designing instructional strategies prior to a course that are more appropriate to students' average ability. Therefore, in this article, we propose a two-stage problem-solving ability modeling approach to obtain students' ability in different learning stages, including the pre-problem-solving ability model and the post-problem-solving ability model. The models are trained with Gradient Boosting Decision Tree (GBDT) on the historical event logs of the prerequisite course and the target course, respectively. With the premodel, we establish the students' pre-problem-solving ability profiles that reflect their average knowledge level before starting a course. Then, the instructional design is dynamically chosen according to the profiles. After a course completes, the post-problem-solving ability profiles are generated by the postmodel to analyze the learning outcome and prompt the learning feedback, in order to complete the closed-loop teaching process. We study the modeling of coding ability in computer programming education to show our teaching strategy. The experimental results show that the generalizable problem-solving ability models yield high classification precision, while most students' abilities have been significantly improved by the proposed approach at the end of the course.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
WAO驳回了李健应助
刚刚
刚刚
HY发布了新的文献求助10
2秒前
3秒前
3秒前
小哥发布了新的文献求助10
3秒前
madcatalysis发布了新的文献求助20
3秒前
咸鱼好闲完成签到 ,获得积分10
4秒前
4秒前
害羞夏兰发布了新的文献求助10
4秒前
大Doctor陈发布了新的文献求助10
4秒前
这就去学习完成签到,获得积分10
5秒前
5秒前
6秒前
gr发布了新的文献求助30
6秒前
momo完成签到,获得积分10
7秒前
彭于晏应助白桦林泪采纳,获得10
8秒前
9秒前
mmccc1发布了新的文献求助10
9秒前
joy完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助50
9秒前
msk完成签到 ,获得积分10
10秒前
大模型应助粗暴的海莲采纳,获得10
10秒前
10秒前
二十一烷完成签到,获得积分10
11秒前
11秒前
二呆发布了新的文献求助10
11秒前
11秒前
搜集达人应助熊月采纳,获得10
11秒前
12秒前
善学以致用应助小哥采纳,获得10
12秒前
俭朴的天曼完成签到,获得积分10
13秒前
微昆界发布了新的文献求助10
13秒前
划水的轩发布了新的文献求助10
13秒前
解惑大师完成签到 ,获得积分10
13秒前
青藤完成签到,获得积分10
14秒前
桐桐应助再睡亿分钟采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600811
求助须知:如何正确求助?哪些是违规求助? 4010804
关于积分的说明 12417574
捐赠科研通 3690690
什么是DOI,文献DOI怎么找? 2034531
邀请新用户注册赠送积分活动 1067930
科研通“疑难数据库(出版商)”最低求助积分说明 952602