Educational Process Mining for Discovering Students' Problem-Solving Ability in Computer Programming Education

计算机科学 过程(计算) 人工智能 Boosting(机器学习) 决策树 机器学习 过程采矿 基于问题的学习 结果(博弈论) 计算机程序设计 编码(社会科学) 数学教育 在制品 操作系统 统计 业务流程 业务 数理经济学 数学 营销 业务流程建模
作者
Fang Liu,Liang Zhao,Jiayi Zhao,Qin Dai,Chunlong Fan,Jun Shen
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:15 (6): 709-719 被引量:5
标识
DOI:10.1109/tlt.2022.3216276
摘要

Educational process mining is now a promising method to provide decision-support information for the teaching–learning process via finding useful educational guidance from the event logs recorded in the learning management system. Existing studies mainly focus on mining students' problem-solving skills or behavior patterns and intervening in students' learning processes according to this information in the late course. However, educators often expect to improve the learning outcome in a proactive manner through dynamically designing instructional strategies prior to a course that are more appropriate to students' average ability. Therefore, in this article, we propose a two-stage problem-solving ability modeling approach to obtain students' ability in different learning stages, including the pre-problem-solving ability model and the post-problem-solving ability model. The models are trained with Gradient Boosting Decision Tree (GBDT) on the historical event logs of the prerequisite course and the target course, respectively. With the premodel, we establish the students' pre-problem-solving ability profiles that reflect their average knowledge level before starting a course. Then, the instructional design is dynamically chosen according to the profiles. After a course completes, the post-problem-solving ability profiles are generated by the postmodel to analyze the learning outcome and prompt the learning feedback, in order to complete the closed-loop teaching process. We study the modeling of coding ability in computer programming education to show our teaching strategy. The experimental results show that the generalizable problem-solving ability models yield high classification precision, while most students' abilities have been significantly improved by the proposed approach at the end of the course.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwz应助科研通管家采纳,获得10
刚刚
刚刚
Hello应助科研通管家采纳,获得10
刚刚
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
向阳发布了新的文献求助10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得20
刚刚
zcl应助科研通管家采纳,获得150
刚刚
wwz应助科研通管家采纳,获得10
刚刚
chenqiumu应助科研通管家采纳,获得30
刚刚
Ankher应助科研通管家采纳,获得30
刚刚
Ankher应助科研通管家采纳,获得30
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
1秒前
GuoH应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得30
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
2秒前
3秒前
4秒前
4秒前
慕青应助llw采纳,获得10
5秒前
5秒前
汉堡包应助仁爱发卡采纳,获得10
6秒前
羊超月发布了新的文献求助50
7秒前
英俊的铭应助汉堡采纳,获得10
7秒前
8秒前
yang发布了新的文献求助10
9秒前
教育厮完成签到,获得积分10
10秒前
10秒前
10秒前
1234567890完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305794
求助须知:如何正确求助?哪些是违规求助? 4451756
关于积分的说明 13853101
捐赠科研通 4339264
什么是DOI,文献DOI怎么找? 2382461
邀请新用户注册赠送积分活动 1377460
关于科研通互助平台的介绍 1345074