Educational Process Mining for Discovering Students' Problem-Solving Ability in Computer Programming Education

计算机科学 过程(计算) 人工智能 Boosting(机器学习) 决策树 机器学习 过程采矿 基于问题的学习 结果(博弈论) 计算机程序设计 编码(社会科学) 数学教育 在制品 操作系统 统计 业务流程 业务 数理经济学 数学 营销 业务流程建模
作者
Fang Liu,Liang Zhao,Jiayi Zhao,Qin Dai,Chunlong Fan,Jun Shen
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:15 (6): 709-719 被引量:5
标识
DOI:10.1109/tlt.2022.3216276
摘要

Educational process mining is now a promising method to provide decision-support information for the teaching–learning process via finding useful educational guidance from the event logs recorded in the learning management system. Existing studies mainly focus on mining students' problem-solving skills or behavior patterns and intervening in students' learning processes according to this information in the late course. However, educators often expect to improve the learning outcome in a proactive manner through dynamically designing instructional strategies prior to a course that are more appropriate to students' average ability. Therefore, in this article, we propose a two-stage problem-solving ability modeling approach to obtain students' ability in different learning stages, including the pre-problem-solving ability model and the post-problem-solving ability model. The models are trained with Gradient Boosting Decision Tree (GBDT) on the historical event logs of the prerequisite course and the target course, respectively. With the premodel, we establish the students' pre-problem-solving ability profiles that reflect their average knowledge level before starting a course. Then, the instructional design is dynamically chosen according to the profiles. After a course completes, the post-problem-solving ability profiles are generated by the postmodel to analyze the learning outcome and prompt the learning feedback, in order to complete the closed-loop teaching process. We study the modeling of coding ability in computer programming education to show our teaching strategy. The experimental results show that the generalizable problem-solving ability models yield high classification precision, while most students' abilities have been significantly improved by the proposed approach at the end of the course.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1123432412完成签到,获得积分10
刚刚
czp发布了新的文献求助10
3秒前
4秒前
7秒前
zhangyulu完成签到 ,获得积分10
10秒前
繁多星完成签到,获得积分10
10秒前
活泼饼干完成签到,获得积分10
11秒前
呆呆是一条鱼完成签到,获得积分10
11秒前
Yuciyy完成签到,获得积分10
12秒前
丹dan完成签到,获得积分10
12秒前
锦上添花完成签到 ,获得积分10
12秒前
怕孤独的乌龟完成签到 ,获得积分10
12秒前
13秒前
14秒前
15秒前
无辜不言完成签到,获得积分10
16秒前
Lucas应助彪壮的美女采纳,获得10
17秒前
袁月辉完成签到,获得积分10
19秒前
李大龙完成签到,获得积分10
19秒前
wang0626完成签到 ,获得积分10
21秒前
沉静的乘风完成签到,获得积分10
22秒前
打打应助chrysan采纳,获得10
23秒前
wgm完成签到,获得积分10
23秒前
凉兮完成签到,获得积分10
24秒前
夏天再见完成签到,获得积分10
25秒前
wumin发布了新的文献求助10
26秒前
仲乔妹完成签到,获得积分10
28秒前
刘柳完成签到 ,获得积分10
30秒前
orixero应助团团采纳,获得10
31秒前
CHH完成签到,获得积分10
32秒前
33秒前
乌啦啦完成签到,获得积分10
34秒前
zjw完成签到 ,获得积分10
35秒前
zzz发布了新的文献求助10
36秒前
满眼喜欢遍布星河完成签到,获得积分10
37秒前
森森完成签到,获得积分10
37秒前
木之尹完成签到 ,获得积分10
38秒前
婷婷完成签到,获得积分10
38秒前
追光者完成签到,获得积分10
41秒前
呆呆的猕猴桃完成签到 ,获得积分10
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
探索化学的奥秘:电子结构方法 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788239
关于积分的说明 7785062
捐赠科研通 2444183
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625586
版权声明 601011