Educational Process Mining for Discovering Students' Problem-Solving Ability in Computer Programming Education

计算机科学 过程(计算) 人工智能 Boosting(机器学习) 决策树 机器学习 过程采矿 基于问题的学习 结果(博弈论) 计算机程序设计 编码(社会科学) 数学教育 在制品 操作系统 统计 业务流程 业务 数理经济学 数学 营销 业务流程建模
作者
Fang Liu,Liang Zhao,Jiayi Zhao,Qin Dai,Chunlong Fan,Jun Shen
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:15 (6): 709-719 被引量:5
标识
DOI:10.1109/tlt.2022.3216276
摘要

Educational process mining is now a promising method to provide decision-support information for the teaching–learning process via finding useful educational guidance from the event logs recorded in the learning management system. Existing studies mainly focus on mining students' problem-solving skills or behavior patterns and intervening in students' learning processes according to this information in the late course. However, educators often expect to improve the learning outcome in a proactive manner through dynamically designing instructional strategies prior to a course that are more appropriate to students' average ability. Therefore, in this article, we propose a two-stage problem-solving ability modeling approach to obtain students' ability in different learning stages, including the pre-problem-solving ability model and the post-problem-solving ability model. The models are trained with Gradient Boosting Decision Tree (GBDT) on the historical event logs of the prerequisite course and the target course, respectively. With the premodel, we establish the students' pre-problem-solving ability profiles that reflect their average knowledge level before starting a course. Then, the instructional design is dynamically chosen according to the profiles. After a course completes, the post-problem-solving ability profiles are generated by the postmodel to analyze the learning outcome and prompt the learning feedback, in order to complete the closed-loop teaching process. We study the modeling of coding ability in computer programming education to show our teaching strategy. The experimental results show that the generalizable problem-solving ability models yield high classification precision, while most students' abilities have been significantly improved by the proposed approach at the end of the course.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cocopan发布了新的文献求助10
刚刚
blenda发布了新的文献求助20
1秒前
万物可爱完成签到 ,获得积分10
2秒前
爆米花应助LHW采纳,获得10
2秒前
2秒前
嘻嘻哈哈完成签到 ,获得积分10
2秒前
不弱小妖完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
somous完成签到,获得积分10
3秒前
Msong发布了新的文献求助10
3秒前
RB完成签到,获得积分10
3秒前
认真黑猫发布了新的文献求助20
3秒前
4秒前
4秒前
李林完成签到,获得积分10
5秒前
jack完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
烟花应助lalala采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
小花发布了新的文献求助10
9秒前
zhong发布了新的文献求助10
10秒前
he大海贼完成签到,获得积分10
10秒前
11秒前
清见的心完成签到,获得积分10
11秒前
11秒前
Peyton Why发布了新的文献求助10
11秒前
大模型应助尺素寸心采纳,获得10
12秒前
13秒前
武映易完成签到 ,获得积分10
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
科研通AI6应助灯灯采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809