Process model for flow-electrode capacitive deionization for energy consumption estimation and system optimization

电容去离子 能源消耗 海水淡化 材料科学 电极 工艺工程 流量(数学) 环境科学 化学 工程类 机械 电气工程 生物化学 物理 物理化学
作者
Chufeng Shi,Hongyang Wang,Ao Li,Guangcan Zhu,Xiaoli Zhao,Fengchang Wu
出处
期刊:Water Research [Elsevier]
卷期号:230: 119517-119517 被引量:12
标识
DOI:10.1016/j.watres.2022.119517
摘要

Flow-electrode capacitive deionization (FCDI) is a new technology for ion removal that delivers sustainable deionization performance. However, FCDI consumes relatively high amounts of energy compared with other conventional desalination technologies, which hinders the industrial application of FCDI. In this study, the energy consumption of each FCDI component was simulated using a steady-state FCDI model to investigate and optimize the main components of energy consumption. Overall, the established process model can be used for theoretical investigation and enhancing our fundamental understanding of the energy consumption of each FCDI component, and provides the design and optimization of FCDI systems. The results showed that the energy consumption of the flow electrodes dominated under most conditions. Changing the operating parameters could obviously affect energy consumption and the energy consumption structure. However, increasing the flow rate and activated carbon (AC) content of the flow-electrode could decrease the energy consumption of the electrode, and the energy consumed by the ion-exchange membranes (IEMs) and desalination chamber was the greatest. These two parts of energy consumption could not be significantly reduced by changing operational parameters. Thus, to further reduce the energy consumption, optimization of the FCDI equipment was carried out by adding titanium mesh to the flow electrodes and the desalination chamber of the FCDI cell. The results showed that the energy consumption of optimized FCDI decreased by 51.9% compared with the original FCDI. The long-term experiment using optimized FCDI showed good stability and repeatability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤香岚发布了新的文献求助10
刚刚
魔法面包完成签到,获得积分20
1秒前
羊yang完成签到,获得积分20
3秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
Accepted应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得30
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
所所应助羊yang采纳,获得10
9秒前
微不足道发布了新的文献求助10
9秒前
幽默的友灵完成签到,获得积分10
11秒前
12秒前
红箭烟雨完成签到,获得积分10
12秒前
科研通AI2S应助梅残风暖采纳,获得10
12秒前
cugwzr发布了新的文献求助10
14秒前
爆米花应助微不足道采纳,获得10
17秒前
黄筱妍发布了新的文献求助10
19秒前
长情伊关注了科研通微信公众号
20秒前
加菲丰丰应助奥特曼采纳,获得20
20秒前
22秒前
Asuka完成签到,获得积分10
23秒前
Ppp完成签到 ,获得积分10
23秒前
Lucas应助意意采纳,获得10
25秒前
27秒前
FashionBoy应助倪倪采纳,获得10
28秒前
29秒前
111完成签到,获得积分20
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803043
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302778
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237