热电效应
离子电导率
材料科学
离子键合
电解质
塞贝克系数
热电材料
化学工程
复合材料
光电子学
热导率
离子
热力学
工程类
物理
化学
电极
有机化学
物理化学
作者
Ziquan Zhou,Yanfen Wan,Jinyu Zi,Guomin Ye,Taosha Jin,Xuemin Geng,Wenbo Zhuang,Peng Yang
标识
DOI:10.1016/j.mtsust.2022.100293
摘要
Harvesting abundant and ubiquitous low-grade thermal energy and simultaneously converting it into electrical energy hold the potential of solving the existing energy crisis. Advances in thermoelectric materials now allow thermoelectric ionogel electrolyte to enhance the energy conversion and storage capacities under a thermal gradient. Here, we report an ionic thermoelectric (i-TE) material based on polyacrylamide (PAM) carboxymethyl cellulose (CMC) double network gel substrate with flexible and high thermal-electrical conversion properties. By combining the thermodiffusion effect of lithium sulfate (Li2SO4) ions and the thermogalvanic effect of [Fe(CN)64−/Fe(CN)63−], which achieved a coupled ionic Seebeck effect of up to 11.58 mV/K, exhibiting a high ionic conductivity (18.4 mS cm−1) and low thermal conductivity (0.47 W m−1/K), resulting in a high ionic power factor (198.2 μW m−1K−2) at room temperature. It exhibited an excellent tensile property (634%) and adhesion, and avoids electrolyte leakage to a large extent. Moreover, the application in ionic capacitors also demonstrates the superior thermoelectric conversion capability of i-TE gels. We believe that i-TE materials will pave a new pathway for low-grade thermal harvesting and self-driven flexible wearable electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI