Demand forecasting of spare parts with regression and machine learning methods: Application in a bus fleet

备品备件 决策树 支持向量机 人工神经网络 计算机科学 回归分析 线性回归 回归 随机森林 贝叶斯多元线性回归 需求预测 人工智能 机器学习 运筹学 工程类 统计 运营管理 数学
作者
Metin İfraz,Adnan Aktepe,Süleyman Ersöz,Tahsin Çetinyokuş
出处
期刊:Maǧallaẗ al-abḥāṯ al-handasiyyaẗ [Journal of Engineering Research]
卷期号:11 (2): 100057-100057 被引量:18
标识
DOI:10.1016/j.jer.2023.100057
摘要

Forecasting the demand of spare parts of vehicles in bus fleets is a vital issue. Vehicles must operate effectively and must have a high availability rate in the fleet. In maintenance operations, faulty parts or parts that complete their lifetime must be replaced with a new one. Spare parts needed must be in inventories with the required amount on time. In this sector, there are thousands of spare parts to manage. The maintenance and repair department must operate effectively. In order to accomplish this, accurate forecast of spare parts is required. In this study, demand forecasting was carried out with regression-based methods (multivariate linear regression, multivariate nonlinear regression, Gaussian process regression, additive regression, regression by discretion, support vector regression), rule-based methods (decision table, M5Rule), tree-based methods (random forest, M5P, Random tree, REPTree) and artificial neural networks. The forecasting model developed in this study includes critical variables such as the number of vehicles in the fleet, the number of breakdowns that cause parts to change, the number of periodic maintenance, mean time between failure and demand quantity in previous years. The application was carried out with real data of eight (2013–2020) years. 2013–2019 data was used for training and 2020 data was used for testing. In forecasts, support vector regression among regression-based methods, decision table among rule-based methods, M5P among tree-based methods gave the best results. It has been observed that the artificial neural network produced more accurate forecasts than all other methods. Artificial neural network forecasts give the highest forecast accuracy rate and the least deviation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小饭完成签到,获得积分10
1秒前
吴彦祖发布了新的文献求助10
2秒前
研友_LOqqmZ发布了新的文献求助10
2秒前
黄启烽发布了新的文献求助10
3秒前
ll完成签到,获得积分10
4秒前
领导范儿应助sun采纳,获得10
4秒前
4秒前
小饭发布了新的文献求助10
4秒前
橙子发布了新的文献求助10
4秒前
Liangccg完成签到,获得积分10
5秒前
赵jl完成签到 ,获得积分10
6秒前
Lucas应助爱诺诺采纳,获得10
7秒前
HHHH发布了新的文献求助10
7秒前
7秒前
共享精神应助阔达的寄灵采纳,获得10
8秒前
和谐从安完成签到,获得积分10
8秒前
27完成签到,获得积分10
9秒前
单纯青槐完成签到,获得积分10
9秒前
10秒前
风清扬发布了新的文献求助30
10秒前
10秒前
buno应助zlzl采纳,获得10
11秒前
清秀的砖头完成签到,获得积分10
11秒前
12秒前
殷硕完成签到,获得积分10
12秒前
13秒前
13秒前
文森特的向日葵完成签到,获得积分10
13秒前
14秒前
一一完成签到,获得积分10
14秒前
不吃香菜完成签到 ,获得积分10
16秒前
天天快乐应助南烟采纳,获得10
17秒前
研友_LOqqmZ发布了新的文献求助10
17秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
galaxy完成签到,获得积分10
17秒前
sun发布了新的文献求助10
18秒前
合适树叶发布了新的文献求助10
18秒前
快乐芷荷完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602383
求助须知:如何正确求助?哪些是违规求助? 4687543
关于积分的说明 14849676
捐赠科研通 4683829
什么是DOI,文献DOI怎么找? 2539859
邀请新用户注册赠送积分活动 1506555
关于科研通互助平台的介绍 1471414