Demand forecasting of spare parts with regression and machine learning methods: Application in a bus fleet

备品备件 决策树 支持向量机 人工神经网络 计算机科学 回归分析 线性回归 回归 随机森林 贝叶斯多元线性回归 需求预测 人工智能 机器学习 运筹学 工程类 统计 运营管理 数学
作者
Metin İfraz,Adnan Aktepe,Süleyman Ersöz,Tahsin Çetinyokuş
出处
期刊:Maǧallaẗ al-abḥāṯ al-handasiyyaẗ [Journal of Engineering Research]
卷期号:11 (2): 100057-100057 被引量:18
标识
DOI:10.1016/j.jer.2023.100057
摘要

Forecasting the demand of spare parts of vehicles in bus fleets is a vital issue. Vehicles must operate effectively and must have a high availability rate in the fleet. In maintenance operations, faulty parts or parts that complete their lifetime must be replaced with a new one. Spare parts needed must be in inventories with the required amount on time. In this sector, there are thousands of spare parts to manage. The maintenance and repair department must operate effectively. In order to accomplish this, accurate forecast of spare parts is required. In this study, demand forecasting was carried out with regression-based methods (multivariate linear regression, multivariate nonlinear regression, Gaussian process regression, additive regression, regression by discretion, support vector regression), rule-based methods (decision table, M5Rule), tree-based methods (random forest, M5P, Random tree, REPTree) and artificial neural networks. The forecasting model developed in this study includes critical variables such as the number of vehicles in the fleet, the number of breakdowns that cause parts to change, the number of periodic maintenance, mean time between failure and demand quantity in previous years. The application was carried out with real data of eight (2013–2020) years. 2013–2019 data was used for training and 2020 data was used for testing. In forecasts, support vector regression among regression-based methods, decision table among rule-based methods, M5P among tree-based methods gave the best results. It has been observed that the artificial neural network produced more accurate forecasts than all other methods. Artificial neural network forecasts give the highest forecast accuracy rate and the least deviation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Heloise完成签到,获得积分10
1秒前
酷波er应助rockyshi采纳,获得10
1秒前
yan发布了新的文献求助10
1秒前
yu完成签到 ,获得积分10
1秒前
麦子发布了新的文献求助100
1秒前
飞龙在天发布了新的文献求助10
2秒前
小高的茯苓糕完成签到,获得积分10
2秒前
2秒前
2秒前
默问应助专注的冰巧采纳,获得10
3秒前
3秒前
WMR发布了新的文献求助10
3秒前
儒雅紫夏完成签到,获得积分10
4秒前
斯文败类应助羽宇采纳,获得10
4秒前
汉堡包应助天真千易采纳,获得10
5秒前
斯文败类应助天真千易采纳,获得10
5秒前
上官若男应助天真千易采纳,获得10
5秒前
ni完成签到,获得积分10
5秒前
SciGPT应助天真千易采纳,获得10
5秒前
无花果应助天真千易采纳,获得10
5秒前
烟花应助天真千易采纳,获得10
6秒前
充电宝应助天真千易采纳,获得10
6秒前
Ava应助天真千易采纳,获得30
6秒前
852应助天真千易采纳,获得10
6秒前
英俊的铭应助天真千易采纳,获得10
6秒前
淡然冬灵发布了新的文献求助10
6秒前
杳杳完成签到 ,获得积分10
6秒前
6秒前
JOUJOU完成签到,获得积分20
7秒前
7秒前
eric888应助mmol采纳,获得200
7秒前
7秒前
刘gugu发布了新的文献求助10
7秒前
orixero应助普外科老白采纳,获得10
8秒前
研友_LkD29n完成签到 ,获得积分10
9秒前
Ava应助逸风望采纳,获得10
9秒前
9秒前
科研通AI6应助小黑采纳,获得10
9秒前
量子星尘发布了新的文献求助10
11秒前
JOUJOU发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525198
求助须知:如何正确求助?哪些是违规求助? 4615517
关于积分的说明 14548794
捐赠科研通 4553583
什么是DOI,文献DOI怎么找? 2495376
邀请新用户注册赠送积分活动 1475913
关于科研通互助平台的介绍 1447670