Demand forecasting of spare parts with regression and machine learning methods: Application in a bus fleet

备品备件 决策树 支持向量机 人工神经网络 计算机科学 回归分析 线性回归 回归 随机森林 贝叶斯多元线性回归 需求预测 人工智能 机器学习 运筹学 工程类 统计 运营管理 数学
作者
Metin İfraz,Adnan Aktepe,Süleyman Ersöz,Tahsin Çetinyokuş
出处
期刊:Maǧallaẗ al-abḥāṯ al-handasiyyaẗ [Journal of Engineering Research]
卷期号:11 (2): 100057-100057 被引量:18
标识
DOI:10.1016/j.jer.2023.100057
摘要

Forecasting the demand of spare parts of vehicles in bus fleets is a vital issue. Vehicles must operate effectively and must have a high availability rate in the fleet. In maintenance operations, faulty parts or parts that complete their lifetime must be replaced with a new one. Spare parts needed must be in inventories with the required amount on time. In this sector, there are thousands of spare parts to manage. The maintenance and repair department must operate effectively. In order to accomplish this, accurate forecast of spare parts is required. In this study, demand forecasting was carried out with regression-based methods (multivariate linear regression, multivariate nonlinear regression, Gaussian process regression, additive regression, regression by discretion, support vector regression), rule-based methods (decision table, M5Rule), tree-based methods (random forest, M5P, Random tree, REPTree) and artificial neural networks. The forecasting model developed in this study includes critical variables such as the number of vehicles in the fleet, the number of breakdowns that cause parts to change, the number of periodic maintenance, mean time between failure and demand quantity in previous years. The application was carried out with real data of eight (2013–2020) years. 2013–2019 data was used for training and 2020 data was used for testing. In forecasts, support vector regression among regression-based methods, decision table among rule-based methods, M5P among tree-based methods gave the best results. It has been observed that the artificial neural network produced more accurate forecasts than all other methods. Artificial neural network forecasts give the highest forecast accuracy rate and the least deviation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SY发布了新的文献求助10
刚刚
1秒前
xiaofanwang完成签到,获得积分10
1秒前
2秒前
2秒前
左丘冥完成签到,获得积分10
3秒前
3秒前
内向的小虾米完成签到,获得积分10
4秒前
迪迪张完成签到,获得积分10
4秒前
桐桐应助小张同学采纳,获得10
4秒前
阳6完成签到 ,获得积分10
4秒前
xiaojin完成签到,获得积分10
5秒前
liu完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
大锅逢饭完成签到,获得积分10
5秒前
5秒前
志小天完成签到,获得积分10
6秒前
7秒前
自觉志泽发布了新的文献求助10
7秒前
ping完成签到 ,获得积分10
7秒前
7秒前
米子哈发布了新的文献求助10
8秒前
华仔应助刘奎冉采纳,获得30
8秒前
研友Bn完成签到 ,获得积分10
9秒前
9秒前
10秒前
xinghe123发布了新的文献求助10
10秒前
酷酷问薇完成签到,获得积分20
11秒前
11秒前
H_完成签到,获得积分10
11秒前
2024dsb完成签到 ,获得积分10
12秒前
12秒前
西行纪发布了新的文献求助10
13秒前
DreamSeker8完成签到,获得积分10
13秒前
科研通AI6应助Scorpio采纳,获得30
13秒前
13秒前
认真浩宇发布了新的文献求助10
14秒前
坚强小虾米完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809