Demand forecasting of spare parts with regression and machine learning methods: Application in a bus fleet

备品备件 决策树 支持向量机 人工神经网络 计算机科学 回归分析 线性回归 回归 随机森林 贝叶斯多元线性回归 需求预测 人工智能 机器学习 运筹学 工程类 统计 运营管理 数学
作者
Metin İfraz,Adnan Aktepe,Süleyman Ersöz,Tahsin Çetinyokuş
出处
期刊:Maǧallaẗ al-abḥāṯ al-handasiyyaẗ [Elsevier BV]
卷期号:11 (2): 100057-100057 被引量:18
标识
DOI:10.1016/j.jer.2023.100057
摘要

Forecasting the demand of spare parts of vehicles in bus fleets is a vital issue. Vehicles must operate effectively and must have a high availability rate in the fleet. In maintenance operations, faulty parts or parts that complete their lifetime must be replaced with a new one. Spare parts needed must be in inventories with the required amount on time. In this sector, there are thousands of spare parts to manage. The maintenance and repair department must operate effectively. In order to accomplish this, accurate forecast of spare parts is required. In this study, demand forecasting was carried out with regression-based methods (multivariate linear regression, multivariate nonlinear regression, Gaussian process regression, additive regression, regression by discretion, support vector regression), rule-based methods (decision table, M5Rule), tree-based methods (random forest, M5P, Random tree, REPTree) and artificial neural networks. The forecasting model developed in this study includes critical variables such as the number of vehicles in the fleet, the number of breakdowns that cause parts to change, the number of periodic maintenance, mean time between failure and demand quantity in previous years. The application was carried out with real data of eight (2013–2020) years. 2013–2019 data was used for training and 2020 data was used for testing. In forecasts, support vector regression among regression-based methods, decision table among rule-based methods, M5P among tree-based methods gave the best results. It has been observed that the artificial neural network produced more accurate forecasts than all other methods. Artificial neural network forecasts give the highest forecast accuracy rate and the least deviation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助ForestEcho采纳,获得10
2秒前
2秒前
4秒前
Flyzhang完成签到,获得积分10
4秒前
科目三应助Li采纳,获得10
4秒前
5秒前
梧桐完成签到 ,获得积分10
5秒前
1210xi完成签到,获得积分10
5秒前
胜起发布了新的文献求助10
5秒前
123发布了新的文献求助10
6秒前
Meveee应助WTaMi采纳,获得10
7秒前
思源应助复杂的冰凡采纳,获得10
9秒前
jason完成签到,获得积分10
12秒前
祝可盈完成签到,获得积分10
14秒前
QZR完成签到,获得积分10
15秒前
天天快乐应助JerryZ采纳,获得10
16秒前
17秒前
明亮ky完成签到,获得积分10
17秒前
Hello应助LU采纳,获得10
18秒前
明朗完成签到 ,获得积分10
18秒前
浮游应助123采纳,获得10
19秒前
宋柳青完成签到 ,获得积分10
20秒前
20秒前
20秒前
Li发布了新的文献求助10
22秒前
qinzhikai完成签到,获得积分10
22秒前
2535498478发布了新的文献求助10
24秒前
沉静的弼发布了新的文献求助10
24秒前
Dafuer完成签到,获得积分10
25秒前
25秒前
小胖完成签到 ,获得积分10
25秒前
26秒前
28秒前
aalihao应助tt采纳,获得10
28秒前
29秒前
务实的绝悟完成签到,获得积分10
29秒前
LiShin发布了新的文献求助10
31秒前
31秒前
烟花应助嘛籽m采纳,获得10
32秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226097
求助须知:如何正确求助?哪些是违规求助? 4397649
关于积分的说明 13687147
捐赠科研通 4262131
什么是DOI,文献DOI怎么找? 2338954
邀请新用户注册赠送积分活动 1336369
关于科研通互助平台的介绍 1292336