亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Demand forecasting of spare parts with regression and machine learning methods: Application in a bus fleet

备品备件 决策树 支持向量机 人工神经网络 计算机科学 回归分析 线性回归 回归 随机森林 贝叶斯多元线性回归 需求预测 人工智能 机器学习 运筹学 工程类 统计 运营管理 数学
作者
Metin İfraz,Adnan Aktepe,Süleyman Ersöz,Tahsin Çetinyokuş
出处
期刊:Maǧallaẗ al-abḥāṯ al-handasiyyaẗ [Journal of Engineering Research]
卷期号:11 (2): 100057-100057 被引量:18
标识
DOI:10.1016/j.jer.2023.100057
摘要

Forecasting the demand of spare parts of vehicles in bus fleets is a vital issue. Vehicles must operate effectively and must have a high availability rate in the fleet. In maintenance operations, faulty parts or parts that complete their lifetime must be replaced with a new one. Spare parts needed must be in inventories with the required amount on time. In this sector, there are thousands of spare parts to manage. The maintenance and repair department must operate effectively. In order to accomplish this, accurate forecast of spare parts is required. In this study, demand forecasting was carried out with regression-based methods (multivariate linear regression, multivariate nonlinear regression, Gaussian process regression, additive regression, regression by discretion, support vector regression), rule-based methods (decision table, M5Rule), tree-based methods (random forest, M5P, Random tree, REPTree) and artificial neural networks. The forecasting model developed in this study includes critical variables such as the number of vehicles in the fleet, the number of breakdowns that cause parts to change, the number of periodic maintenance, mean time between failure and demand quantity in previous years. The application was carried out with real data of eight (2013–2020) years. 2013–2019 data was used for training and 2020 data was used for testing. In forecasts, support vector regression among regression-based methods, decision table among rule-based methods, M5P among tree-based methods gave the best results. It has been observed that the artificial neural network produced more accurate forecasts than all other methods. Artificial neural network forecasts give the highest forecast accuracy rate and the least deviation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
风清扬发布了新的文献求助10
4秒前
5秒前
烟花应助123采纳,获得10
7秒前
机灵柚子应助纯真抽屉采纳,获得50
9秒前
arui发布了新的文献求助10
10秒前
CipherSage应助务实的访卉采纳,获得10
18秒前
机灵柚子应助纯真抽屉采纳,获得50
19秒前
fml完成签到,获得积分10
23秒前
25秒前
WTF完成签到,获得积分10
26秒前
28秒前
脑洞疼应助123采纳,获得30
30秒前
Hcc完成签到 ,获得积分10
31秒前
33秒前
33秒前
汉堡包应助冷艳的小懒虫采纳,获得10
36秒前
36秒前
37秒前
李爱国应助Anxietymaker采纳,获得10
39秒前
怕黑鲂完成签到 ,获得积分10
40秒前
40秒前
不知终日梦为鱼完成签到,获得积分10
43秒前
123456发布了新的文献求助10
43秒前
43秒前
小蘑菇应助123采纳,获得30
46秒前
量子星尘发布了新的文献求助10
46秒前
moumou完成签到 ,获得积分10
47秒前
54秒前
汪海洋完成签到 ,获得积分10
55秒前
Crisp完成签到 ,获得积分10
56秒前
大个应助LSL丶采纳,获得10
57秒前
59秒前
哈哈哈哈哈哈完成签到,获得积分20
59秒前
orange完成签到 ,获得积分10
1分钟前
欣欣发布了新的文献求助10
1分钟前
思源应助123采纳,获得10
1分钟前
Yvonne发布了新的文献求助10
1分钟前
李健应助犹豫帆布鞋采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657768
求助须知:如何正确求助?哪些是违规求助? 4812247
关于积分的说明 15080301
捐赠科研通 4815972
什么是DOI,文献DOI怎么找? 2577008
邀请新用户注册赠送积分活动 1532019
关于科研通互助平台的介绍 1490548