Demand forecasting of spare parts with regression and machine learning methods: Application in a bus fleet

备品备件 决策树 支持向量机 人工神经网络 计算机科学 回归分析 线性回归 回归 随机森林 贝叶斯多元线性回归 需求预测 人工智能 机器学习 运筹学 工程类 统计 运营管理 数学
作者
Metin İfraz,Adnan Aktepe,Süleyman Ersöz,Tahsin Çetinyokuş
出处
期刊:Maǧallaẗ al-abḥāṯ al-handasiyyaẗ [Journal of Engineering Research]
卷期号:11 (2): 100057-100057 被引量:18
标识
DOI:10.1016/j.jer.2023.100057
摘要

Forecasting the demand of spare parts of vehicles in bus fleets is a vital issue. Vehicles must operate effectively and must have a high availability rate in the fleet. In maintenance operations, faulty parts or parts that complete their lifetime must be replaced with a new one. Spare parts needed must be in inventories with the required amount on time. In this sector, there are thousands of spare parts to manage. The maintenance and repair department must operate effectively. In order to accomplish this, accurate forecast of spare parts is required. In this study, demand forecasting was carried out with regression-based methods (multivariate linear regression, multivariate nonlinear regression, Gaussian process regression, additive regression, regression by discretion, support vector regression), rule-based methods (decision table, M5Rule), tree-based methods (random forest, M5P, Random tree, REPTree) and artificial neural networks. The forecasting model developed in this study includes critical variables such as the number of vehicles in the fleet, the number of breakdowns that cause parts to change, the number of periodic maintenance, mean time between failure and demand quantity in previous years. The application was carried out with real data of eight (2013–2020) years. 2013–2019 data was used for training and 2020 data was used for testing. In forecasts, support vector regression among regression-based methods, decision table among rule-based methods, M5P among tree-based methods gave the best results. It has been observed that the artificial neural network produced more accurate forecasts than all other methods. Artificial neural network forecasts give the highest forecast accuracy rate and the least deviation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助心房子采纳,获得10
刚刚
jiao完成签到,获得积分10
刚刚
1秒前
1秒前
搜集达人应助哈哈大笑采纳,获得10
1秒前
Mr.Reese完成签到,获得积分10
1秒前
1秒前
孤独的珩完成签到,获得积分10
2秒前
Miracle发布了新的文献求助10
2秒前
zkwww完成签到 ,获得积分10
2秒前
汉堡包应助李来仪采纳,获得10
3秒前
3秒前
饱满以松完成签到 ,获得积分10
3秒前
开心瓜瓜瓜完成签到,获得积分10
3秒前
5秒前
5秒前
6秒前
墨染发布了新的文献求助10
6秒前
0000完成签到,获得积分20
7秒前
7秒前
冰激凌UP发布了新的文献求助10
8秒前
机智念芹完成签到 ,获得积分10
8秒前
8秒前
9秒前
Raymond应助su采纳,获得10
9秒前
10秒前
朴素小鸟胃完成签到,获得积分10
10秒前
诗梦完成签到,获得积分10
10秒前
称心的紫萱完成签到,获得积分10
11秒前
11秒前
javalin发布了新的文献求助10
11秒前
12秒前
科研通AI5应助Xiaolei采纳,获得30
12秒前
12秒前
inRe完成签到,获得积分10
12秒前
12秒前
12秒前
叫滚滚完成签到,获得积分10
13秒前
内向秋寒发布了新的文献求助10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794