Demand forecasting of spare parts with regression and machine learning methods: Application in a bus fleet

备品备件 决策树 支持向量机 人工神经网络 计算机科学 回归分析 线性回归 回归 随机森林 贝叶斯多元线性回归 需求预测 人工智能 机器学习 运筹学 工程类 统计 运营管理 数学
作者
Metin İfraz,Adnan Aktepe,Süleyman Ersöz,Tahsin Çetinyokuş
出处
期刊:Maǧallaẗ al-abḥāṯ al-handasiyyaẗ [Journal of Engineering Research]
卷期号:11 (2): 100057-100057 被引量:18
标识
DOI:10.1016/j.jer.2023.100057
摘要

Forecasting the demand of spare parts of vehicles in bus fleets is a vital issue. Vehicles must operate effectively and must have a high availability rate in the fleet. In maintenance operations, faulty parts or parts that complete their lifetime must be replaced with a new one. Spare parts needed must be in inventories with the required amount on time. In this sector, there are thousands of spare parts to manage. The maintenance and repair department must operate effectively. In order to accomplish this, accurate forecast of spare parts is required. In this study, demand forecasting was carried out with regression-based methods (multivariate linear regression, multivariate nonlinear regression, Gaussian process regression, additive regression, regression by discretion, support vector regression), rule-based methods (decision table, M5Rule), tree-based methods (random forest, M5P, Random tree, REPTree) and artificial neural networks. The forecasting model developed in this study includes critical variables such as the number of vehicles in the fleet, the number of breakdowns that cause parts to change, the number of periodic maintenance, mean time between failure and demand quantity in previous years. The application was carried out with real data of eight (2013–2020) years. 2013–2019 data was used for training and 2020 data was used for testing. In forecasts, support vector regression among regression-based methods, decision table among rule-based methods, M5P among tree-based methods gave the best results. It has been observed that the artificial neural network produced more accurate forecasts than all other methods. Artificial neural network forecasts give the highest forecast accuracy rate and the least deviation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jeep先生发布了新的文献求助10
5秒前
黄小北发布了新的文献求助10
5秒前
我超凶的发布了新的文献求助10
8秒前
8秒前
Owen应助Layace采纳,获得10
8秒前
xxxt完成签到 ,获得积分10
9秒前
9秒前
冰阔罗完成签到,获得积分10
11秒前
11秒前
和谐续发布了新的文献求助10
13秒前
14秒前
Fjj应助英勇的电话采纳,获得10
15秒前
SciGPT应助李李采纳,获得10
16秒前
阿盛发布了新的文献求助10
16秒前
17秒前
善学以致用应助小田采纳,获得10
20秒前
21秒前
21秒前
想疯发布了新的文献求助10
23秒前
24秒前
Two-Capitals发布了新的文献求助10
26秒前
SciGPT应助无语的如音采纳,获得10
30秒前
30秒前
31秒前
33秒前
无情凡松发布了新的文献求助30
33秒前
追梦完成签到 ,获得积分10
33秒前
黄小北发布了新的文献求助10
33秒前
Layace发布了新的文献求助10
37秒前
wanci应助易四夕采纳,获得10
38秒前
谢会会完成签到 ,获得积分10
39秒前
疯狂老马完成签到,获得积分10
40秒前
曹小仙男完成签到 ,获得积分10
40秒前
寻道图强应助ljh1771采纳,获得30
41秒前
42秒前
科研工作者完成签到,获得积分10
43秒前
尽如完成签到,获得积分10
45秒前
李李发布了新的文献求助10
46秒前
CipherSage应助科研通管家采纳,获得10
46秒前
Orange应助科研通管家采纳,获得10
46秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140496
求助须知:如何正确求助?哪些是违规求助? 2791382
关于积分的说明 7798716
捐赠科研通 2447682
什么是DOI,文献DOI怎么找? 1302020
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194