亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Demand forecasting of spare parts with regression and machine learning methods: Application in a bus fleet

备品备件 决策树 支持向量机 人工神经网络 计算机科学 回归分析 线性回归 回归 随机森林 贝叶斯多元线性回归 需求预测 人工智能 机器学习 运筹学 工程类 统计 运营管理 数学
作者
Metin İfraz,Adnan Aktepe,Süleyman Ersöz,Tahsin Çetinyokuş
出处
期刊:Maǧallaẗ al-abḥāṯ al-handasiyyaẗ [Elsevier BV]
卷期号:11 (2): 100057-100057 被引量:18
标识
DOI:10.1016/j.jer.2023.100057
摘要

Forecasting the demand of spare parts of vehicles in bus fleets is a vital issue. Vehicles must operate effectively and must have a high availability rate in the fleet. In maintenance operations, faulty parts or parts that complete their lifetime must be replaced with a new one. Spare parts needed must be in inventories with the required amount on time. In this sector, there are thousands of spare parts to manage. The maintenance and repair department must operate effectively. In order to accomplish this, accurate forecast of spare parts is required. In this study, demand forecasting was carried out with regression-based methods (multivariate linear regression, multivariate nonlinear regression, Gaussian process regression, additive regression, regression by discretion, support vector regression), rule-based methods (decision table, M5Rule), tree-based methods (random forest, M5P, Random tree, REPTree) and artificial neural networks. The forecasting model developed in this study includes critical variables such as the number of vehicles in the fleet, the number of breakdowns that cause parts to change, the number of periodic maintenance, mean time between failure and demand quantity in previous years. The application was carried out with real data of eight (2013–2020) years. 2013–2019 data was used for training and 2020 data was used for testing. In forecasts, support vector regression among regression-based methods, decision table among rule-based methods, M5P among tree-based methods gave the best results. It has been observed that the artificial neural network produced more accurate forecasts than all other methods. Artificial neural network forecasts give the highest forecast accuracy rate and the least deviation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
29秒前
31秒前
dcm发布了新的文献求助10
33秒前
36秒前
量子星尘发布了新的文献求助10
51秒前
juan完成签到 ,获得积分10
1分钟前
1分钟前
dandan完成签到,获得积分10
2分钟前
2分钟前
puzhongjiMiQ发布了新的文献求助10
2分钟前
FSYHantis发布了新的文献求助10
2分钟前
chcmy完成签到 ,获得积分0
2分钟前
PeterLin完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
万能图书馆应助BinBlues采纳,获得10
3分钟前
3分钟前
FSYHantis完成签到,获得积分10
4分钟前
4分钟前
4分钟前
Re完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
章鱼完成签到,获得积分10
6分钟前
6分钟前
puzhongjiMiQ发布了新的文献求助10
7分钟前
7分钟前
7分钟前
淡淡醉波wuliao完成签到 ,获得积分0
7分钟前
量子星尘发布了新的文献求助10
7分钟前
hfguwn完成签到,获得积分10
8分钟前
8分钟前
排骨大王完成签到,获得积分10
8分钟前
wuju发布了新的文献求助10
8分钟前
8分钟前
8分钟前
笨笨山芙完成签到 ,获得积分10
8分钟前
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612195
求助须知:如何正确求助?哪些是违规求助? 4017475
关于积分的说明 12436362
捐赠科研通 3699564
什么是DOI,文献DOI怎么找? 2040183
邀请新用户注册赠送积分活动 1073023
科研通“疑难数据库(出版商)”最低求助积分说明 956705