Demand forecasting of spare parts with regression and machine learning methods: Application in a bus fleet

备品备件 决策树 支持向量机 人工神经网络 计算机科学 回归分析 线性回归 回归 随机森林 贝叶斯多元线性回归 需求预测 人工智能 机器学习 运筹学 工程类 统计 运营管理 数学
作者
Metin İfraz,Adnan Aktepe,Süleyman Ersöz,Tahsin Çetinyokuş
出处
期刊:Maǧallaẗ al-abḥāṯ al-handasiyyaẗ [Journal of Engineering Research]
卷期号:11 (2): 100057-100057 被引量:18
标识
DOI:10.1016/j.jer.2023.100057
摘要

Forecasting the demand of spare parts of vehicles in bus fleets is a vital issue. Vehicles must operate effectively and must have a high availability rate in the fleet. In maintenance operations, faulty parts or parts that complete their lifetime must be replaced with a new one. Spare parts needed must be in inventories with the required amount on time. In this sector, there are thousands of spare parts to manage. The maintenance and repair department must operate effectively. In order to accomplish this, accurate forecast of spare parts is required. In this study, demand forecasting was carried out with regression-based methods (multivariate linear regression, multivariate nonlinear regression, Gaussian process regression, additive regression, regression by discretion, support vector regression), rule-based methods (decision table, M5Rule), tree-based methods (random forest, M5P, Random tree, REPTree) and artificial neural networks. The forecasting model developed in this study includes critical variables such as the number of vehicles in the fleet, the number of breakdowns that cause parts to change, the number of periodic maintenance, mean time between failure and demand quantity in previous years. The application was carried out with real data of eight (2013–2020) years. 2013–2019 data was used for training and 2020 data was used for testing. In forecasts, support vector regression among regression-based methods, decision table among rule-based methods, M5P among tree-based methods gave the best results. It has been observed that the artificial neural network produced more accurate forecasts than all other methods. Artificial neural network forecasts give the highest forecast accuracy rate and the least deviation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星期八完成签到,获得积分10
刚刚
无量发布了新的文献求助10
1秒前
1秒前
烤鱼的夹克完成签到 ,获得积分10
1秒前
1秒前
1秒前
chenqiumu应助水若琳采纳,获得30
2秒前
wr发布了新的文献求助10
2秒前
王世俊完成签到,获得积分10
3秒前
大模型应助慕笙采纳,获得10
3秒前
何禾发布了新的文献求助10
3秒前
科研通AI2S应助高兴的海亦采纳,获得10
4秒前
zoey完成签到 ,获得积分10
4秒前
科研通AI2S应助高兴的海亦采纳,获得10
4秒前
科研通AI2S应助高兴的海亦采纳,获得10
4秒前
科研通AI2S应助高兴的海亦采纳,获得10
4秒前
科研通AI2S应助高兴的海亦采纳,获得10
4秒前
科研通AI2S应助高兴的海亦采纳,获得10
4秒前
科研通AI2S应助高兴的海亦采纳,获得10
4秒前
科研通AI2S应助高兴的海亦采纳,获得10
4秒前
科研通AI2S应助高兴的海亦采纳,获得10
4秒前
科研通AI2S应助高兴的海亦采纳,获得10
4秒前
5秒前
5秒前
5秒前
JamesPei应助飘逸颜采纳,获得10
5秒前
mingmingjiu完成签到,获得积分10
7秒前
雪玲呀完成签到 ,获得积分10
7秒前
高傲小子发布了新的文献求助30
8秒前
jzc发布了新的文献求助10
9秒前
10秒前
重要的香发布了新的文献求助30
10秒前
欣喜的香彤完成签到,获得积分10
11秒前
滕滕完成签到,获得积分10
12秒前
伊芷发布了新的文献求助10
12秒前
安详的小凝完成签到,获得积分10
13秒前
pcr发布了新的文献求助10
14秒前
15秒前
15秒前
太阳当空照完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337