Attention-Based Gesture Recognition Using Commodity WiFi Devices

计算机科学 手势 手势识别 信道状态信息 人工智能 特征(语言学) 频道(广播) 信号(编程语言) 语音识别 噪音(视频) 计算机视觉 模式识别(心理学) 无线 电信 图像(数学) 语言学 哲学 程序设计语言
作者
Yu Gu,Huan Yan,Xiang Zhang,Yantong Wang,Jinyang Huang,Yusheng Ji,Fuji Ren
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 9685-9696 被引量:7
标识
DOI:10.1109/jsen.2023.3261325
摘要

The broad spectrum of applications of WiFi sensing technology, such as gait and gesture recognition, has received widespread attention in recent years. Though most WiFi sensing systems may achieve impressive performance, the challenge lies in making good use of the amplitude and phase information of the channel state information (CSI) retrieved from commodity WiFi devices to carry out sensing tasks. To address this issue, we develop an attention-based framework to properly track the importance of amplitude and phase information to adaptively extract distinguishing features related to gestures. Specifically, we first use the CSI ratio instead of the original CSI as the basic signal, which not only eliminates most of the noise, but also contains the complete information of the CSI signal corresponding to human motion. Then, we use the self-attention module to learn the coarse attention weights of amplitude and phase information of the CSI ratio. Moreover, the relation-attention module is used to integrate features to further refine the attention weight. In this way, we proposed a framework that can adaptively learn distinctive feature representations and, thus, facilitate ubiquitous gesture recognition. Extensive experiments demonstrate the effectiveness of method for gesture recognition under various conditions on the open Widar3.0 dataset. The proposed method achieves 99.69% in-domain recognition accuracy, 96.95% cross-location recognition accuracy, and 93.71% cross-orientation recognition accuracy, outperforming the state-of-the-art solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pluto应助zw采纳,获得10
刚刚
乐观凝冬发布了新的文献求助20
1秒前
李健的粉丝团团长应助hc采纳,获得10
1秒前
2秒前
烟花应助wwl采纳,获得10
3秒前
研友_Z1WrgL完成签到,获得积分10
3秒前
3秒前
英俊的铭应助美满的天薇采纳,获得10
3秒前
Andy_2024应助gemini0615采纳,获得10
5秒前
夏夏完成签到 ,获得积分10
5秒前
6秒前
从容芮应助健康的惜文采纳,获得10
7秒前
勤恳的丹珍完成签到,获得积分10
7秒前
7秒前
丘比特应助生动的凡采纳,获得10
7秒前
oceanao应助菩提本无树采纳,获得10
8秒前
甜甜玫瑰应助byumi采纳,获得10
9秒前
hc给hc的求助进行了留言
9秒前
9秒前
9秒前
argon完成签到,获得积分10
10秒前
10秒前
10秒前
LQ完成签到 ,获得积分10
12秒前
嘀嘀咕咕发布了新的文献求助20
12秒前
12秒前
12秒前
12秒前
13秒前
黎遥发布了新的文献求助10
13秒前
13秒前
CipherSage应助羊羊羊采纳,获得10
15秒前
科研通AI2S应助合适的采珊采纳,获得10
15秒前
Orange应助追梦采纳,获得10
15秒前
Yimi发布了新的文献求助10
15秒前
16秒前
orixero应助怕孤单的觅夏采纳,获得10
17秒前
jahcenia发布了新的文献求助10
17秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156292
求助须知:如何正确求助?哪些是违规求助? 2807762
关于积分的说明 7874438
捐赠科研通 2465982
什么是DOI,文献DOI怎么找? 1312538
科研通“疑难数据库(出版商)”最低求助积分说明 630166
版权声明 601912