Modelling and finite element analysis of fractured femur bone with locking compression plate under fatigue load condition

材料科学 股骨 压缩(物理) 钛合金 有限元法 断裂韧性 复合材料 冶金 结构工程 合金 外科 工程类 医学
作者
V. Balasubramani,D. Gokul,R.K. Gokul
出处
期刊:Materials Today: Proceedings [Elsevier]
标识
DOI:10.1016/j.matpr.2023.03.437
摘要

Orthopaedic Surgeons are facing difficulties to cure the bone fracture which is developed in the bone of the human due to accidents. Fractured bones are externally joined with the support of screws and locking compression plates. In this present work, the femur bone, locking compression plate and screws were modelled with the help of CREO 2.0 and fatigue analysis was performed for existing joining plate materials using Stainless steel using ANSYS Workbench software. Then crack was generated in the modelled bone and assembled with screws and locking compression plates. Currently used plate materials are replaced with bio compatible materials like Cobalt-chromium (Co-Cr) material, Titanium aluminum Vanadium material (Ti-6Al-4V), 316 Stainless Steel (316 SS) and better and optimum material was identified with improved fatigue life. The finite element analysis was also performed for femur bone with or without Locking compression plates and screws for different implant materials like Cobalt-chromium (Co-Cr) material, Titanium aluminum Vanadium material and 316L stainless steel. Predicted facture toughness and critical strain energy release rate values of femur bone with locking compression plate were 88% and 93% lesser than the predicted facture toughness and critical strain energy release rate values of bone respectively without locking compression plate for 316 SS material. It was observed that the developed crack in the femur bone will not propagate further and it retains the strength of the bone. Predicted fatigue life of the bone for Co-Cr material was higher than 316 SS and Titanium aluminum Vanadium material. Cobalt-chromium alloy implant material was suggested for younger age patients during their bone fracture surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百事可乐发布了新的文献求助10
刚刚
123发布了新的文献求助10
刚刚
1秒前
1秒前
keke完成签到,获得积分10
1秒前
科研通AI6应助聪明贞采纳,获得10
1秒前
科目三应助薯片采纳,获得10
1秒前
李健应助薯片采纳,获得10
1秒前
1秒前
fufufuxia发布了新的文献求助20
1秒前
2秒前
cisdee完成签到,获得积分20
3秒前
机智的嘻嘻完成签到 ,获得积分10
3秒前
蓝天发布了新的文献求助10
3秒前
毛彬发布了新的文献求助10
4秒前
落后十八发布了新的文献求助10
4秒前
爆爆发布了新的文献求助10
4秒前
dandna完成签到 ,获得积分10
5秒前
6秒前
欲见发布了新的文献求助10
6秒前
研友_VZG7GZ应助hjyylab采纳,获得10
6秒前
Ying发布了新的文献求助10
6秒前
Simon发布了新的文献求助10
7秒前
漫天发布了新的文献求助10
7秒前
悠悠发布了新的文献求助10
7秒前
逆光完成签到 ,获得积分10
8秒前
8秒前
9秒前
NexusExplorer应助liu采纳,获得10
9秒前
9秒前
9秒前
TT发布了新的文献求助10
10秒前
爆爆完成签到,获得积分20
10秒前
10秒前
11秒前
叶小洲发布了新的文献求助30
11秒前
Ansels发布了新的文献求助20
11秒前
雪落发布了新的文献求助10
12秒前
lcj发布了新的文献求助10
12秒前
SciGPT应助不想起床采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648325
求助须知:如何正确求助?哪些是违规求助? 4775345
关于积分的说明 15043906
捐赠科研通 4807336
什么是DOI,文献DOI怎么找? 2570747
邀请新用户注册赠送积分活动 1527484
关于科研通互助平台的介绍 1486437