Modelling and finite element analysis of fractured femur bone with locking compression plate under fatigue load condition

材料科学 股骨 压缩(物理) 钛合金 有限元法 断裂韧性 复合材料 冶金 结构工程 合金 外科 工程类 医学
作者
V. Balasubramani,D. Gokul,R.K. Gokul
出处
期刊:Materials Today: Proceedings [Elsevier]
标识
DOI:10.1016/j.matpr.2023.03.437
摘要

Orthopaedic Surgeons are facing difficulties to cure the bone fracture which is developed in the bone of the human due to accidents. Fractured bones are externally joined with the support of screws and locking compression plates. In this present work, the femur bone, locking compression plate and screws were modelled with the help of CREO 2.0 and fatigue analysis was performed for existing joining plate materials using Stainless steel using ANSYS Workbench software. Then crack was generated in the modelled bone and assembled with screws and locking compression plates. Currently used plate materials are replaced with bio compatible materials like Cobalt-chromium (Co-Cr) material, Titanium aluminum Vanadium material (Ti-6Al-4V), 316 Stainless Steel (316 SS) and better and optimum material was identified with improved fatigue life. The finite element analysis was also performed for femur bone with or without Locking compression plates and screws for different implant materials like Cobalt-chromium (Co-Cr) material, Titanium aluminum Vanadium material and 316L stainless steel. Predicted facture toughness and critical strain energy release rate values of femur bone with locking compression plate were 88% and 93% lesser than the predicted facture toughness and critical strain energy release rate values of bone respectively without locking compression plate for 316 SS material. It was observed that the developed crack in the femur bone will not propagate further and it retains the strength of the bone. Predicted fatigue life of the bone for Co-Cr material was higher than 316 SS and Titanium aluminum Vanadium material. Cobalt-chromium alloy implant material was suggested for younger age patients during their bone fracture surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小洪俊熙完成签到,获得积分10
刚刚
123完成签到,获得积分10
刚刚
SYLH应助di采纳,获得10
刚刚
刚刚
柒毛完成签到 ,获得积分10
1秒前
搜集达人应助tatata采纳,获得20
1秒前
英俊的铭应助诚c采纳,获得10
1秒前
兔子完成签到 ,获得积分10
1秒前
1秒前
苹果巧蕊完成签到 ,获得积分10
1秒前
脑洞疼应助SDS采纳,获得10
1秒前
JamesPei应助Guo采纳,获得20
2秒前
马保国123完成签到,获得积分10
2秒前
2秒前
2秒前
迷你的冰巧完成签到,获得积分10
2秒前
万能图书馆应助学术蝗虫采纳,获得10
3秒前
慕青应助aurora采纳,获得30
3秒前
Jasper应助满意的盼夏采纳,获得10
3秒前
yitang完成签到,获得积分10
5秒前
www完成签到,获得积分10
5秒前
zhenzhen发布了新的文献求助10
5秒前
飞羽发布了新的文献求助10
5秒前
江沅完成签到 ,获得积分10
5秒前
6秒前
6秒前
Sean完成签到,获得积分10
6秒前
兜兜完成签到 ,获得积分10
6秒前
羊羊羊发布了新的文献求助10
7秒前
Rui完成签到,获得积分10
7秒前
bigger.b完成签到,获得积分10
7秒前
Nerissa完成签到,获得积分10
7秒前
Dr.Tang发布了新的文献求助10
7秒前
7秒前
田様应助笑点低蜜蜂采纳,获得10
7秒前
英俊的铭应助么系么系采纳,获得10
8秒前
ding应助寒冷的奇异果采纳,获得10
8秒前
lx发布了新的文献求助10
9秒前
舒适念真发布了新的文献求助10
9秒前
沉默哈密瓜完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678