材料科学
股骨
钛
压缩(物理)
钛合金
有限元法
断裂韧性
复合材料
冶金
结构工程
合金
外科
工程类
医学
作者
V. Balasubramani,D. Gokul,R.K. Gokul
标识
DOI:10.1016/j.matpr.2023.03.437
摘要
Orthopaedic Surgeons are facing difficulties to cure the bone fracture which is developed in the bone of the human due to accidents. Fractured bones are externally joined with the support of screws and locking compression plates. In this present work, the femur bone, locking compression plate and screws were modelled with the help of CREO 2.0 and fatigue analysis was performed for existing joining plate materials using Stainless steel using ANSYS Workbench software. Then crack was generated in the modelled bone and assembled with screws and locking compression plates. Currently used plate materials are replaced with bio compatible materials like Cobalt-chromium (Co-Cr) material, Titanium aluminum Vanadium material (Ti-6Al-4V), 316 Stainless Steel (316 SS) and better and optimum material was identified with improved fatigue life. The finite element analysis was also performed for femur bone with or without Locking compression plates and screws for different implant materials like Cobalt-chromium (Co-Cr) material, Titanium aluminum Vanadium material and 316L stainless steel. Predicted facture toughness and critical strain energy release rate values of femur bone with locking compression plate were 88% and 93% lesser than the predicted facture toughness and critical strain energy release rate values of bone respectively without locking compression plate for 316 SS material. It was observed that the developed crack in the femur bone will not propagate further and it retains the strength of the bone. Predicted fatigue life of the bone for Co-Cr material was higher than 316 SS and Titanium aluminum Vanadium material. Cobalt-chromium alloy implant material was suggested for younger age patients during their bone fracture surgery.
科研通智能强力驱动
Strongly Powered by AbleSci AI