Real-Time Correction of Gas Concentration in Nondispersive Infrared Sensor

入口 扩散 湍流 机械 流速 体积流量 流量(数学) 气体扩散 流利 分析化学(期刊) 化学 材料科学 热力学 计算流体力学 物理 地质学 色谱法 电极 物理化学 地貌学
作者
Zhenfeng Qiang,Xue Wang,Weihang Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-10 被引量:2
标识
DOI:10.1109/tim.2022.3188056
摘要

Non-dispersive infrared (NDIR) sensors have been widely used in measuring gas concentration in process industry. However, the inhomogeneous gas diffusion in the gas chamber of NDIR sensor increases the response time and causes measurement error. In this case, the fast-and-accurate measurement of gas concentration is of great importance in avoiding accidents. This article focuses on constructing a novel gas diffusion model among normalization concentration (N-concentration), inlet flow velocity, and diffusion time. Firstly, the structure model of gas chamber is constructed based on Fluent 15.0 and the turbulence intensity is calculated based on dynamic viscosity, inlet flow velocity, concentration, temperature and pressure. The simulation model is constructed based on the assumption of simultaneous reaction and mass transfer. The initial result shows that the N-concentration along the optical path is mainly influenced by inlet flow velocity and diffusion time, while the temperature, pressure and inlet concentration have less influence on gas diffusion. According to the velocity distribution map, the critical zone of inlet flow velocity is defined to divide the gas diffusion state into different zones. Then, a novel Multi-interval exponential diffusion model is proposed to calculate the N-concentration and the real-time measurement of gas concentration can be achieved based on inlet flow velocity, diffusion time and the pre-defined critical zone of inlet flow velocity. The proposed model is suitable for the gas concentration correction of different gases. Finally, the validation indexes include the coefficient of determination (R 2 ), Mean Squared Error (MSE) and standard uncertainty shows the accuracy of the proposed model can be obviously increased.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Neko关注了科研通微信公众号
刚刚
1秒前
眼睛大的傲菡完成签到,获得积分10
1秒前
lance完成签到,获得积分10
3秒前
Singularity发布了新的文献求助10
5秒前
Fx完成签到 ,获得积分10
5秒前
xiangdan完成签到,获得积分10
6秒前
7秒前
26347完成签到 ,获得积分10
12秒前
丘比特应助8D采纳,获得10
12秒前
猪儿虫儿完成签到 ,获得积分20
13秒前
aging00发布了新的文献求助10
14秒前
14秒前
刻苦的平松完成签到 ,获得积分10
14秒前
ihuhiu完成签到,获得积分10
15秒前
15秒前
15秒前
清逸之风完成签到 ,获得积分10
15秒前
16秒前
张小陈完成签到 ,获得积分10
16秒前
17秒前
18秒前
18秒前
欢呼的世立完成签到,获得积分10
18秒前
xie69发布了新的文献求助10
19秒前
云云完成签到 ,获得积分10
20秒前
xiangdan发布了新的文献求助30
20秒前
aiyawy发布了新的文献求助10
20秒前
zwww发布了新的文献求助10
21秒前
思源应助Singularity采纳,获得10
21秒前
aging00完成签到,获得积分20
21秒前
22秒前
22秒前
8D发布了新的文献求助10
23秒前
汉堡包应助电麻木采纳,获得10
23秒前
FashionBoy应助他问问采纳,获得10
24秒前
猪儿虫儿发布了新的文献求助10
24秒前
陈啊炳完成签到,获得积分20
24秒前
张boy完成签到,获得积分10
25秒前
25秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464083
求助须知:如何正确求助?哪些是违规求助? 3057296
关于积分的说明 9056888
捐赠科研通 2747427
什么是DOI,文献DOI怎么找? 1507362
科研通“疑难数据库(出版商)”最低求助积分说明 696507
邀请新用户注册赠送积分活动 696029