斑点图案
计算机科学
带宽(计算)
人工神经网络
谐振器
稳健性(进化)
干涉测量
频谱分析仪
人工智能
光学
物理
电信
生物化学
基因
化学
作者
Yangyang Wan,Xinyu Fan,Bingxin Xu,Zuyuan He
标识
DOI:10.1002/lpor.202201018
摘要
Abstract Most neural networks (NNs) used for reconstructive spectrum analyzers (RSAs) rely on data‐driven training strategies, which can be time‐consuming due to the need for a large training dataset with a limited amount of output channels. Here, a specially designed NN is proposed for a reconstructive wavemeter based on temporal speckle obtained from a whispering gallery mode (WGM) resonator. By combining a physical model and data‐driven model, it only takes 10 µs to obtain a reference speckle for the generation of a training dataset. The WGM resonator‐based wavemeter assisted by the NN uses only one photo‐detector to obtain a temporal speckle, achieving a spectral resolution of 3.2 fm. The number of output channels reaches 2300, which is the largest dynamic range achieved by an NN in RSA without the need for re‐training. It demonstrates that the proposed NN has capability to resolve unseen spectrum with multi‐tone wavelengths. Moreover, the proposed network exhibits better robustness in long‐time measurement compared to data‐driven model based networks. This opens up new possibilities for NN design methods in RSA, without the need for a large training dataset, by incorporating a physical model to achieve high‐resolution, high‐dynamic‐range, and fast‐speed spectrum measurement.
科研通智能强力驱动
Strongly Powered by AbleSci AI