A Double Deep Q-Network framework for a flexible job shop scheduling problem with dynamic job arrivals and urgent job insertions

计算机科学 作业调度程序 工作车间 作业车间调度 运筹学 流水车间调度 计算机网络 布线(电子设计自动化) 工程类 排队
作者
Shaojun Lu,Yongqi Wang,Min Kong,Weizhong Wang,Weimin Tan,Yingxin Song
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108487-108487 被引量:4
标识
DOI:10.1016/j.engappai.2024.108487
摘要

In the semiconductor manufacturing industry, the Dynamic Flexible Job Shop Scheduling Problem is regarded as one of the most complex and significant scheduling problems. Existing studies consider the dynamic arrival of jobs, however, the insertion of urgent jobs such as testing chips poses a challenge to the production model, and there is an urgent need for new scheduling methods to improve the dynamic response and self-adjustment of the shop floor. In this work, deep reinforcement learning is utilized to address the dynamic flexible job shop scheduling problem and facilitate near-real-time shop floor decision-making. We extracted eight state features, including machine utilization, operation completion rate, etc., to reflect real-time shop floor production data. After examining machine availability time, the machine's earliest available time is redefined and incorporated into the design of compound scheduling rules. Eight compound scheduling rules have been developed for job selection and machine allocation. By using the state features as inputs to the Double Deep Q-Network, it is possible to acquire the state action values (Q-values) of each compound scheduling rule, and the intelligent agent can learn a reasonable optimization strategy through training. Simulation studies show that the proposed Double Deep Q-Network algorithm outperforms other heuristics and well-known scheduling rules by generating excellent solutions quickly. In most scenarios, the Double Deep Q-Network algorithm outperforms the Deep Q-Network, Q-Learning, and State-Action-Reward-State-Action (SARSA) frameworks. Moreover, the intelligent agent has good generalization ability in terms of optimization for similar objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ying发布了新的文献求助10
刚刚
YG完成签到,获得积分10
刚刚
1秒前
myy完成签到,获得积分10
4秒前
无心的天真完成签到 ,获得积分10
4秒前
4秒前
PT177245发布了新的文献求助10
4秒前
5秒前
彭于晏应助往返采纳,获得10
8秒前
pcx发布了新的文献求助10
9秒前
10秒前
温暖白柏完成签到,获得积分10
10秒前
10秒前
聪明无敌小腚宝完成签到,获得积分10
11秒前
12秒前
14秒前
16秒前
Irene发布了新的文献求助30
17秒前
李爱国应助皮皮卡采纳,获得10
17秒前
罗氏集团发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
发阿发完成签到,获得积分10
18秒前
20秒前
海风发布了新的文献求助10
20秒前
迎风发布了新的文献求助10
21秒前
往返发布了新的文献求助10
21秒前
慧喆完成签到 ,获得积分10
21秒前
tanrui发布了新的文献求助10
23秒前
23秒前
无限的妙菡完成签到 ,获得积分10
23秒前
郑同学完成签到,获得积分10
23秒前
天边外发布了新的文献求助10
24秒前
望志青年应助柳娅茹采纳,获得10
24秒前
皮皮卡发布了新的文献求助10
28秒前
从容的鲜花完成签到,获得积分20
28秒前
迎风完成签到,获得积分20
30秒前
31秒前
小二郎应助科研通管家采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075