A Double Deep Q-Network framework for a flexible job shop scheduling problem with dynamic job arrivals and urgent job insertions

计算机科学 作业调度程序 工作车间 作业车间调度 运筹学 流水车间调度 计算机网络 布线(电子设计自动化) 工程类 排队
作者
Shaojun Lu,Yongqi Wang,Min Kong,Weizhong Wang,Weimin Tan,Yingxin Song
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108487-108487 被引量:3
标识
DOI:10.1016/j.engappai.2024.108487
摘要

In the semiconductor manufacturing industry, the Dynamic Flexible Job Shop Scheduling Problem is regarded as one of the most complex and significant scheduling problems. Existing studies consider the dynamic arrival of jobs, however, the insertion of urgent jobs such as testing chips poses a challenge to the production model, and there is an urgent need for new scheduling methods to improve the dynamic response and self-adjustment of the shop floor. In this work, deep reinforcement learning is utilized to address the dynamic flexible job shop scheduling problem and facilitate near-real-time shop floor decision-making. We extracted eight state features, including machine utilization, operation completion rate, etc., to reflect real-time shop floor production data. After examining machine availability time, the machine's earliest available time is redefined and incorporated into the design of compound scheduling rules. Eight compound scheduling rules have been developed for job selection and machine allocation. By using the state features as inputs to the Double Deep Q-Network, it is possible to acquire the state action values (Q-values) of each compound scheduling rule, and the intelligent agent can learn a reasonable optimization strategy through training. Simulation studies show that the proposed Double Deep Q-Network algorithm outperforms other heuristics and well-known scheduling rules by generating excellent solutions quickly. In most scenarios, the Double Deep Q-Network algorithm outperforms the Deep Q-Network, Q-Learning, and State-Action-Reward-State-Action (SARSA) frameworks. Moreover, the intelligent agent has good generalization ability in terms of optimization for similar objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健的小迷弟应助Cherry采纳,获得10
1秒前
科目三应助mashichuang采纳,获得10
2秒前
亚当发布了新的文献求助10
4秒前
Diamond完成签到 ,获得积分10
4秒前
5秒前
7秒前
9秒前
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
lalala发布了新的文献求助10
12秒前
五十一完成签到 ,获得积分10
13秒前
CurryFan完成签到 ,获得积分10
14秒前
mashichuang发布了新的文献求助10
14秒前
啦啦发布了新的文献求助10
15秒前
沉默的婴完成签到 ,获得积分10
16秒前
进退须臾完成签到,获得积分10
19秒前
酷波er应助小胡采纳,获得10
20秒前
我是老大应助erfvtyuh采纳,获得10
20秒前
搜集达人应助mashichuang采纳,获得10
20秒前
22秒前
23秒前
24秒前
yuyuyuyuyuyuyu完成签到,获得积分10
25秒前
丑123完成签到 ,获得积分20
25秒前
26秒前
27秒前
悦悦发布了新的文献求助10
28秒前
耍酷翰发布了新的文献求助10
29秒前
29秒前
29秒前
30秒前
30秒前
彪壮的小玉完成签到,获得积分10
32秒前
哈哈哈完成签到 ,获得积分10
33秒前
研友_Z7Xvl8发布了新的文献求助10
33秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147949
求助须知:如何正确求助?哪些是违规求助? 2798959
关于积分的说明 7832858
捐赠科研通 2456063
什么是DOI,文献DOI怎么找? 1307104
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620