亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Double Deep Q-Network framework for a flexible job shop scheduling problem with dynamic job arrivals and urgent job insertions

计算机科学 作业调度程序 工作车间 作业车间调度 运筹学 流水车间调度 计算机网络 布线(电子设计自动化) 工程类 排队
作者
Shaojun Lu,Yongqi Wang,Min Kong,Weizhong Wang,Weimin Tan,Yingxin Song
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108487-108487 被引量:43
标识
DOI:10.1016/j.engappai.2024.108487
摘要

In the semiconductor manufacturing industry, the Dynamic Flexible Job Shop Scheduling Problem is regarded as one of the most complex and significant scheduling problems. Existing studies consider the dynamic arrival of jobs, however, the insertion of urgent jobs such as testing chips poses a challenge to the production model, and there is an urgent need for new scheduling methods to improve the dynamic response and self-adjustment of the shop floor. In this work, deep reinforcement learning is utilized to address the dynamic flexible job shop scheduling problem and facilitate near-real-time shop floor decision-making. We extracted eight state features, including machine utilization, operation completion rate, etc., to reflect real-time shop floor production data. After examining machine availability time, the machine's earliest available time is redefined and incorporated into the design of compound scheduling rules. Eight compound scheduling rules have been developed for job selection and machine allocation. By using the state features as inputs to the Double Deep Q-Network, it is possible to acquire the state action values (Q-values) of each compound scheduling rule, and the intelligent agent can learn a reasonable optimization strategy through training. Simulation studies show that the proposed Double Deep Q-Network algorithm outperforms other heuristics and well-known scheduling rules by generating excellent solutions quickly. In most scenarios, the Double Deep Q-Network algorithm outperforms the Deep Q-Network, Q-Learning, and State-Action-Reward-State-Action (SARSA) frameworks. Moreover, the intelligent agent has good generalization ability in terms of optimization for similar objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
11秒前
11秒前
yupeng_xu完成签到 ,获得积分10
14秒前
15秒前
weiyichen发布了新的文献求助10
16秒前
mecsxg发布了新的文献求助30
16秒前
19秒前
CipherSage应助qing采纳,获得10
20秒前
Swear完成签到 ,获得积分10
20秒前
讨厌下雨天完成签到 ,获得积分10
20秒前
老实人品牌完成签到,获得积分10
22秒前
鸟Pro发布了新的文献求助10
23秒前
三泥完成签到,获得积分10
26秒前
搜集达人应助外向不愁采纳,获得10
27秒前
科研废物完成签到 ,获得积分10
29秒前
llllll发布了新的文献求助10
29秒前
Owen应助鸟Pro采纳,获得10
32秒前
dkw完成签到 ,获得积分10
33秒前
37秒前
年轻花卷完成签到 ,获得积分10
38秒前
mecsxg完成签到,获得积分10
39秒前
小新完成签到 ,获得积分10
39秒前
我不是BOB完成签到,获得积分10
41秒前
41秒前
研友_VZG7GZ应助weiyichen采纳,获得10
42秒前
48秒前
清秀芝麻完成签到 ,获得积分10
49秒前
乐乐应助endlessloop采纳,获得10
50秒前
柳行天完成签到 ,获得积分10
53秒前
乐观小蕊完成签到 ,获得积分10
56秒前
llllll完成签到,获得积分10
57秒前
森距离发布了新的文献求助10
58秒前
郭荣发布了新的文献求助10
59秒前
1分钟前
爱吃饼干的土拨鼠完成签到,获得积分10
1分钟前
endlessloop发布了新的文献求助10
1分钟前
爆米花应助森距离采纳,获得10
1分钟前
小eeeeee完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681113
求助须知:如何正确求助?哪些是违规求助? 5004606
关于积分的说明 15174989
捐赠科研通 4840793
什么是DOI,文献DOI怎么找? 2594460
邀请新用户注册赠送积分活动 1547586
关于科研通互助平台的介绍 1505524