嵌合抗原受体
抗原
表位
融合蛋白
体内
生物
弧(几何)
细胞生物学
T细胞
受体
体外
细胞溶解
T细胞受体
分子生物学
癌症研究
免疫学
细胞毒性T细胞
生物化学
重组DNA
免疫系统
遗传学
几何学
数学
基因
作者
Justin P. Edwards,Jeffrey S. Swers,Janine M. Buonato,Liubov Zaritskaya,Chaofeng Mu,Ankit Gupta,Sigal Shachar,David W. LaFleur,Laura K. Richman,David A. Tice,David M. Hilbert
标识
DOI:10.1016/j.ymthe.2024.04.027
摘要
While conventional chimeric antigen-receptor (CAR)-T therapies have shown remarkable clinical activity in some settings, they can induce severe toxicities and are rarely curative. To address these challenges, we developed a controllable cell therapy where synthetic D-domain-containing proteins (soluble protein antigen-receptor X-linker [SparX]) bind one or more tumor antigens and mark those cells for elimination by genetically modified T cells (antigen-receptor complex [ARC]-T). The chimeric antigen receptor was engineered with a D-domain that specifically binds to the SparX protein via a unique TAG, derived from human alpha-fetoprotein. The interaction is mediated through an epitope on the TAG that is occluded in the native alpha-fetoprotein molecule. In vitro and in vivo data demonstrate that the activation and cytolytic activity of ARC-T cells is dependent on the dose of SparX protein and only occurs when ARC-T cells are engaged with SparX proteins bound to antigen-positive cells. ARC-T cell specificity was also redirected in vivo by changing SparX proteins that recognized different tumor antigens to combat inherent or acquired tumor heterogeneity. The ARC-SparX platform is designed to expand patient and physician access to cell therapy by controlling potential toxicities through SparX dosing regimens and enhancing tumor elimination through sequential or simultaneous administration of SparX proteins engineered to bind different tumor antigens.
科研通智能强力驱动
Strongly Powered by AbleSci AI