General Model for Predicting Response of Gas-Sensitive Materials to Target Gas Based on Machine Learning

机器学习 感知器 排名(信息检索) 人工智能 随机森林 计算机科学 多层感知器 阿达布思 人工神经网络 吸附 交叉验证 支持向量机 化学 有机化学
作者
Zi‐Jiang Yang,Yujiao Sun,Shasha Gao,Qiuchen Yu,Yizhe Zhao,Yumeng Huo,Zixin Wan,Sheng Huang,Yanyan Wang,Xiuquan Gu
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (5): 2509-2519 被引量:21
标识
DOI:10.1021/acssensors.4c00186
摘要

Gas sensors play a crucial role in various industries and applications. In recent years, there has been an increasing demand for gas sensors in society. However, the current method for screening gas-sensitive materials is time-, energy-, and cost-consuming. Consequently, an imperative exists to enhance the screening efficiency. In this study, we proposed a collaborative screening strategy through integration of density functional theory and machine learning. Taking zinc oxide (ZnO) as an example, the responsiveness of ZnO to the target gas was determined quickly on the basis of the changes in the electronic state and structure before and after gas adsorption. In this work, the adsorption energy and electronic and structural characteristics of ZnO after adsorbing 24 kinds of gases were calculated. These computed features served as the basis for training a machine learning model. Subsequently, various machine learning and evaluation algorithms were utilized to train the fast screening model. The importance of feature values was evaluated by the AdaBoost, Random Forest, and Extra Trees models. Specifically, charge transfer was assigned importance values of 0.160, 0.127, and 0.122, respectively, ranking as the highest among the 11 features. Following closely was the d-band center, which was presumed to exert influence on electrical conductivity and, consequently, adsorption properties. With 5-fold cross-validation using the Extra Tree accuracy, the 24-sample data set achieved an accuracy of 88%. The 72-sample data set achieved an accuracy of 78% using multilayer perceptron after 5-fold cross-validation, with both data sets exhibiting low standard deviations. This verified the accuracy and reliability of the strategy, showcasing its potential for rapidly screening a material's responsiveness to the target gas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑暗之神完成签到,获得积分10
刚刚
刚刚
季文婷发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
Qz发布了新的文献求助10
2秒前
沅芷0871完成签到,获得积分10
2秒前
粉面菜蛋完成签到,获得积分10
2秒前
2秒前
ahsisalah完成签到,获得积分10
2秒前
lyy发布了新的文献求助10
2秒前
bearbiscuit完成签到,获得积分10
3秒前
anastasia完成签到,获得积分10
3秒前
3秒前
Shawn完成签到,获得积分10
3秒前
4秒前
4秒前
KKKK发布了新的文献求助10
4秒前
qwert完成签到,获得积分10
4秒前
普鲁卡因发布了新的文献求助10
4秒前
Iris发布了新的文献求助10
4秒前
黑暗之神发布了新的文献求助10
4秒前
隐形的映波完成签到,获得积分10
4秒前
4秒前
呱呱发布了新的文献求助20
4秒前
4秒前
fwb发布了新的文献求助10
5秒前
散白完成签到,获得积分20
5秒前
Stella应助怡然的乐巧采纳,获得10
5秒前
所所应助tuo zhang采纳,获得10
5秒前
5秒前
平淡的火龙果完成签到,获得积分10
5秒前
dandelion完成签到,获得积分10
6秒前
笑点低的靳完成签到,获得积分10
6秒前
copyaa完成签到,获得积分10
6秒前
呵tui完成签到,获得积分20
6秒前
7秒前
JIAca发布了新的文献求助10
7秒前
yangyangyang完成签到,获得积分10
7秒前
panini发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017