General Model for Predicting Response of Gas-Sensitive Materials to Target Gas Based on Machine Learning

机器学习 感知器 排名(信息检索) 人工智能 随机森林 计算机科学 多层感知器 阿达布思 人工神经网络 吸附 交叉验证 支持向量机 化学 有机化学
作者
Zi‐Jiang Yang,Yujiao Sun,Shasha Gao,Qiuchen Yu,Yizhe Zhao,Yumeng Huo,Zixin Wan,Sheng Huang,Yanyan Wang,Xiuquan Gu
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (5): 2509-2519 被引量:1
标识
DOI:10.1021/acssensors.4c00186
摘要

Gas sensors play a crucial role in various industries and applications. In recent years, there has been an increasing demand for gas sensors in society. However, the current method for screening gas-sensitive materials is time-, energy-, and cost-consuming. Consequently, an imperative exists to enhance the screening efficiency. In this study, we proposed a collaborative screening strategy through integration of density functional theory and machine learning. Taking zinc oxide (ZnO) as an example, the responsiveness of ZnO to the target gas was determined quickly on the basis of the changes in the electronic state and structure before and after gas adsorption. In this work, the adsorption energy and electronic and structural characteristics of ZnO after adsorbing 24 kinds of gases were calculated. These computed features served as the basis for training a machine learning model. Subsequently, various machine learning and evaluation algorithms were utilized to train the fast screening model. The importance of feature values was evaluated by the AdaBoost, Random Forest, and Extra Trees models. Specifically, charge transfer was assigned importance values of 0.160, 0.127, and 0.122, respectively, ranking as the highest among the 11 features. Following closely was the d-band center, which was presumed to exert influence on electrical conductivity and, consequently, adsorption properties. With 5-fold cross-validation using the Extra Tree accuracy, the 24-sample data set achieved an accuracy of 88%. The 72-sample data set achieved an accuracy of 78% using multilayer perceptron after 5-fold cross-validation, with both data sets exhibiting low standard deviations. This verified the accuracy and reliability of the strategy, showcasing its potential for rapidly screening a material's responsiveness to the target gas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
姝_发布了新的文献求助10
刚刚
周芷卉完成签到 ,获得积分10
刚刚
1秒前
2秒前
小西发布了新的文献求助10
3秒前
3秒前
thy完成签到 ,获得积分10
3秒前
3秒前
Xing发布了新的文献求助10
5秒前
5秒前
lyz666发布了新的文献求助10
5秒前
6秒前
张怡发布了新的文献求助10
6秒前
周凡淇发布了新的文献求助10
6秒前
科目三应助wang采纳,获得10
8秒前
8秒前
8秒前
丘比特应助zzy采纳,获得10
9秒前
少年发布了新的文献求助10
10秒前
10秒前
Akim应助hhhh采纳,获得10
12秒前
12秒前
今后应助靓丽的溪灵采纳,获得10
12秒前
WEIDERR发布了新的文献求助10
12秒前
科研通AI2S应助香菜味钠片采纳,获得10
12秒前
12秒前
技术的不能发表完成签到,获得积分10
13秒前
清念发布了新的文献求助10
13秒前
西西发布了新的文献求助10
13秒前
Hello应助spark采纳,获得10
14秒前
思源应助Rolo采纳,获得10
15秒前
Azz发布了新的文献求助30
15秒前
hmlee123发布了新的文献求助10
15秒前
15秒前
viauue9发布了新的文献求助10
16秒前
安东完成签到 ,获得积分10
16秒前
小灰灰完成签到,获得积分10
16秒前
16秒前
感动冷玉完成签到,获得积分20
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328