General Model for Predicting Response of Gas-Sensitive Materials to Target Gas Based on Machine Learning

机器学习 感知器 排名(信息检索) 人工智能 随机森林 计算机科学 多层感知器 阿达布思 人工神经网络 吸附 交叉验证 支持向量机 化学 有机化学
作者
Zi‐Jiang Yang,Yujiao Sun,Shasha Gao,Qiuchen Yu,Yizhe Zhao,Yumeng Huo,Zixin Wan,Sheng Huang,Yanyan Wang,Xiuquan Gu
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (5): 2509-2519 被引量:16
标识
DOI:10.1021/acssensors.4c00186
摘要

Gas sensors play a crucial role in various industries and applications. In recent years, there has been an increasing demand for gas sensors in society. However, the current method for screening gas-sensitive materials is time-, energy-, and cost-consuming. Consequently, an imperative exists to enhance the screening efficiency. In this study, we proposed a collaborative screening strategy through integration of density functional theory and machine learning. Taking zinc oxide (ZnO) as an example, the responsiveness of ZnO to the target gas was determined quickly on the basis of the changes in the electronic state and structure before and after gas adsorption. In this work, the adsorption energy and electronic and structural characteristics of ZnO after adsorbing 24 kinds of gases were calculated. These computed features served as the basis for training a machine learning model. Subsequently, various machine learning and evaluation algorithms were utilized to train the fast screening model. The importance of feature values was evaluated by the AdaBoost, Random Forest, and Extra Trees models. Specifically, charge transfer was assigned importance values of 0.160, 0.127, and 0.122, respectively, ranking as the highest among the 11 features. Following closely was the d-band center, which was presumed to exert influence on electrical conductivity and, consequently, adsorption properties. With 5-fold cross-validation using the Extra Tree accuracy, the 24-sample data set achieved an accuracy of 88%. The 72-sample data set achieved an accuracy of 78% using multilayer perceptron after 5-fold cross-validation, with both data sets exhibiting low standard deviations. This verified the accuracy and reliability of the strategy, showcasing its potential for rapidly screening a material's responsiveness to the target gas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
zh完成签到,获得积分10
2秒前
LYY完成签到 ,获得积分10
2秒前
baoleijia发布了新的文献求助200
2秒前
豆包完成签到,获得积分10
4秒前
rorraine_xu完成签到,获得积分10
5秒前
李某某应助123采纳,获得10
6秒前
SUE发布了新的文献求助10
7秒前
7秒前
迷路的问丝完成签到,获得积分20
7秒前
8秒前
Lucas应助一叶扁舟采纳,获得10
8秒前
9秒前
科目三应助cyanpomelo采纳,获得10
11秒前
11秒前
deeferf发布了新的文献求助10
12秒前
12秒前
小魔王发布了新的文献求助10
13秒前
15秒前
zhouyu发布了新的文献求助10
15秒前
15秒前
云是完成签到 ,获得积分10
16秒前
李y梅子完成签到 ,获得积分10
17秒前
ran发布了新的文献求助10
17秒前
ChatGPT发布了新的文献求助10
20秒前
成泰乐发布了新的文献求助10
21秒前
少少少完成签到,获得积分10
21秒前
李宫俊发布了新的文献求助10
21秒前
斑马不一般应助吱呜采纳,获得10
22秒前
22秒前
22秒前
王则华关注了科研通微信公众号
23秒前
ran完成签到,获得积分10
24秒前
Fengyun完成签到,获得积分10
24秒前
10完成签到,获得积分10
25秒前
26秒前
27秒前
sunny完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941061
求助须知:如何正确求助?哪些是违规求助? 4207141
关于积分的说明 13076618
捐赠科研通 3985902
什么是DOI,文献DOI怎么找? 2182363
邀请新用户注册赠送积分活动 1197920
关于科研通互助平台的介绍 1110256