General Model for Predicting Response of Gas-Sensitive Materials to Target Gas Based on Machine Learning

机器学习 感知器 排名(信息检索) 人工智能 随机森林 计算机科学 多层感知器 阿达布思 人工神经网络 吸附 交叉验证 支持向量机 化学 有机化学
作者
Zi‐Jiang Yang,Yujiao Sun,Shasha Gao,Qiuchen Yu,Yizhe Zhao,Yumeng Huo,Zixin Wan,Sheng Huang,Yanyan Wang,Xiuquan Gu
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (5): 2509-2519 被引量:9
标识
DOI:10.1021/acssensors.4c00186
摘要

Gas sensors play a crucial role in various industries and applications. In recent years, there has been an increasing demand for gas sensors in society. However, the current method for screening gas-sensitive materials is time-, energy-, and cost-consuming. Consequently, an imperative exists to enhance the screening efficiency. In this study, we proposed a collaborative screening strategy through integration of density functional theory and machine learning. Taking zinc oxide (ZnO) as an example, the responsiveness of ZnO to the target gas was determined quickly on the basis of the changes in the electronic state and structure before and after gas adsorption. In this work, the adsorption energy and electronic and structural characteristics of ZnO after adsorbing 24 kinds of gases were calculated. These computed features served as the basis for training a machine learning model. Subsequently, various machine learning and evaluation algorithms were utilized to train the fast screening model. The importance of feature values was evaluated by the AdaBoost, Random Forest, and Extra Trees models. Specifically, charge transfer was assigned importance values of 0.160, 0.127, and 0.122, respectively, ranking as the highest among the 11 features. Following closely was the d-band center, which was presumed to exert influence on electrical conductivity and, consequently, adsorption properties. With 5-fold cross-validation using the Extra Tree accuracy, the 24-sample data set achieved an accuracy of 88%. The 72-sample data set achieved an accuracy of 78% using multilayer perceptron after 5-fold cross-validation, with both data sets exhibiting low standard deviations. This verified the accuracy and reliability of the strategy, showcasing its potential for rapidly screening a material's responsiveness to the target gas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不高兴完成签到,获得积分10
1秒前
欧阳正义发布了新的文献求助10
4秒前
所所应助bjf555采纳,获得10
4秒前
6秒前
小巧的怜晴完成签到,获得积分10
9秒前
xuxuxuxu完成签到 ,获得积分10
9秒前
尹尹尹发布了新的文献求助10
12秒前
吱吱吱完成签到,获得积分10
13秒前
13秒前
Hello应助Zxxz采纳,获得10
13秒前
16秒前
16秒前
张晓飞完成签到,获得积分10
16秒前
17秒前
体贴花卷发布了新的文献求助10
20秒前
在写了发布了新的文献求助10
21秒前
张晓飞发布了新的文献求助10
22秒前
张张完成签到 ,获得积分10
22秒前
搜集达人应助尹尹尹采纳,获得10
24秒前
25秒前
月林旭完成签到 ,获得积分20
29秒前
29秒前
DragonT完成签到,获得积分10
30秒前
30秒前
30秒前
31秒前
32秒前
bjf555发布了新的文献求助10
33秒前
shengchang88发布了新的文献求助10
33秒前
飘逸小懒猪应助luoluo采纳,获得10
35秒前
远航发布了新的文献求助10
36秒前
36秒前
星辰大海应助陶醉的蜜蜂采纳,获得10
37秒前
ozy发布了新的文献求助10
37秒前
37秒前
小王完成签到,获得积分10
38秒前
彭于晏应助shengchang88采纳,获得80
39秒前
40秒前
KAKIN应助科研通管家采纳,获得10
40秒前
CAOHOU应助科研通管家采纳,获得10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966919
求助须知:如何正确求助?哪些是违规求助? 3512387
关于积分的说明 11162970
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432