药丸
医学
结直肠癌
机制(生物学)
生物信息学
药理学
癌症
内科学
生物
认识论
哲学
作者
Shaochong Qi,Xinyu Liang,Zijing Wang,Hao-Ran Jin,Liqun Zou,Jinlin Yang
摘要
This study aimed to explore the mechanism through which Tibetan medicine Liuwei Muxiang (LWMX) pills acts against colorectal cancer (CRC). We firstly retrieved the active ingredients and the correlated targets of LWMX pills from public databases. The CRC-related targets were determined through bioinformatic analysis of a public CRC dataset. By computing the intersection of the drug-specific and disease-related targets, LWMX pill–CRC interaction networks were constructed using the protein–protein interaction (PPI) method and functional enrichment analysis. Subsequently, we determined the hub genes using machine learning tools and further verified their critical roles in CRC treatment via immune infiltration analysis and molecular docking studies. We identified 81 active ingredients in LWMX pills with 614 correlated targets, 1877 differentially expressed genes, and 9534 coexpression module genes related to CRC. A total of 5 target hub genes were identified among the 108 intersecting genes using machine learning algorithms. The immune infiltration analysis results suggested that LWMX pills could affect the CRC immune infiltration microenvironment by regulating the expression of the target hub genes. Finally, the molecular docking outcomes revealed stable binding affinity between all target hub proteins and the primary active ingredients of LWMX pills. Our findings illustrate the anti-CRC potential and the mechanism of action of LWMX pills and provide novel insights into multitarget medication for CRC treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI