亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comprehensive Analysis of a Dendritic Cell Marker Genes Signature to Predict Prognosis and Immunotherapy Response in Lung Adenocarcinoma

免疫疗法 免疫系统 肿瘤科 医学 免疫学 内科学 生物
作者
Peng Song,Yuan Li,Moyan Zhang,Baihan Lyu,Yong Cui,Shugeng Gao
出处
期刊:Journal of Immunotherapy [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/cji.0000000000000521
摘要

With the development of immune checkpoints inhibitors (ICIs), immunotherapy has recently taken center stage in cancer treatment. Dendritic cells exert complicated and important functions in antitumor immunity. This study aims to construct a novel dendritic cell marker gene signature (DCMGS) to predict the prognosis and immunotherapy response of lung adenocarcinoma (LUAD). DC marker genes in LUAD were identified by analysis of single-cell RNA sequencing data. 6 genes ( G0S2, KLF4, ALDH2, IER3, TXN, CD69 ) were screened as the most prognosis-related genes for constructing DCMGS on a training cohort from TCGA data set. Patients were divided into high-risk and low-risk groups by DCMGS risk score based on overall survival time. Then, the predictive ability of the risk model was validated in 6 independent cohorts. DCMGS was verified to be an independent prognostic factor in multivariate analysis. Furthermore, we performed pathway enrichment analysis to explore possible biological mechanisms of the powerful predictive ability of DCMGS, and immune cell infiltration landscape and inflammatory activities were exhibited to reflect the immune profile. Notably, we bridged DCMGS with expression of immune checkpoints and TCR/BCR repertoire diversity that can inflect immunotherapy response. Finally, the predictive ability of DCMGS in immunotherapy response was also validated by 2 cohorts that had received immunotherapy. As a result, the patients with lower DCMGS risk scores showed a better prognosis and immunotherapy response. In conclusion, DCMGS was suggested to be a promising prognostic indicator for LUAD and a desirable predictor for immunotherapy response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
22222发布了新的文献求助10
1秒前
cCc发布了新的文献求助10
1秒前
3秒前
阿治完成签到 ,获得积分10
4秒前
李响发布了新的文献求助10
9秒前
嘟嘟嘟嘟发布了新的文献求助10
11秒前
cCc完成签到,获得积分10
16秒前
19秒前
科研通AI2S应助嘟嘟嘟嘟采纳,获得10
23秒前
朴素的如豹完成签到,获得积分10
28秒前
机智大白菜真实的钥匙完成签到,获得积分10
29秒前
NexusExplorer应助李响采纳,获得10
30秒前
bkagyin应助mmyhn采纳,获得10
31秒前
longh完成签到,获得积分10
31秒前
w_tiger完成签到 ,获得积分10
38秒前
飞快的孱完成签到,获得积分10
42秒前
42秒前
仙女完成签到 ,获得积分10
53秒前
潇潇雨歇完成签到,获得积分10
54秒前
汉堡包应助meikoo采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
目目应助科研通管家采纳,获得10
1分钟前
Blank发布了新的文献求助10
1分钟前
1分钟前
Tender完成签到,获得积分10
1分钟前
kk发布了新的文献求助10
1分钟前
可爱的函函应助Blank采纳,获得10
1分钟前
lulu8809完成签到,获得积分10
1分钟前
1分钟前
今后应助木南采纳,获得10
1分钟前
meikoo发布了新的文献求助10
1分钟前
1分钟前
1分钟前
韩雨桐发布了新的文献求助10
1分钟前
shl发布了新的文献求助10
1分钟前
1分钟前
CodeCraft应助shl采纳,获得30
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555687
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390713
捐赠科研通 2831030
什么是DOI,文献DOI怎么找? 1556295
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803