铜绿微囊藻
普通小球藻
生态毒性
光合作用
生物
杀虫剂
生态毒理学
毒性
微囊藻
蓝藻
环境化学
毒理
藻类
化学
植物
生态学
细菌
遗传学
有机化学
作者
Jun Wang,Meng Li,Tongyun Yin,Xiaogang Ma,Xiaoyong Zhu
标识
DOI:10.1016/j.envres.2024.118755
摘要
The rising global demand for agricultural products is leading to the widespread application of pesticides, such as spinetoram, resulting in environmental pollution and ecotoxicity to nontarget organisms in aquatic ecosystems. This research focused on assessing the toxicity of spinetoram at various concentrations (0, 0.01, 0.1, 0.5, 1.0, and 3.0 mg L−1) on two common freshwater microalgae, Chlorella vulgaris and Microcystis aeruginosa, to shed light on the ecotoxicological effects of insecticides. Our findings demonstrate that M. aeruginosa is more sensitive to spinetoram than is C. vulgaris, with a concentration-dependent reduction in the growth rate observed for M. aeruginosa, whereas only the highest concentration of spinetoram adversely affected C. vulgaris. At a concentration of 0.01 mg L−1, the growth rate of M. aeruginosa unexpectedly increased beginning on day 7, indicating a potential hormetic effect. Although initial exposure to spinetoram improved the photosynthetic efficiency of both microalgae strains at all concentrations, detrimental effects became apparent at higher concentrations and with prolonged exposure. The photosynthetic efficiency of C. vulgaris recovered, in contrast to that of M. aeruginosa, which exhibited limited recovery. Spinetoram more significantly inhibited the effective quantum yield of PSII (EQY) in M. aeruginosa than in C. vulgaris. Although spinetoram is not designed to target phytoplankton, its toxicity can disrupt primary productivity and modify phytoplankton-consumer interactions via bottom-up control mechanisms. This study enhances our understanding of spinetoram's ecotoxicity and potential effects on aquatic ecosystems.
科研通智能强力驱动
Strongly Powered by AbleSci AI