亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on model predictive control of autonomous underwater vehicle based on physics informed neural network modeling

人工神经网络 模型预测控制 水下 控制(管理) 计算机科学 控制工程 工程类 人工智能 地质学 海洋学
作者
Tao Liu,Jintao Zhao,Junhao Huang,Zhenglin Li,Lingji Xu,Bo Zhao
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:304: 117844-117844 被引量:17
标识
DOI:10.1016/j.oceaneng.2024.117844
摘要

In the rapidly evolving field of Autonomous Underwater Vehicles (AUVs), achieving precise control remains a critical endeavor. This study presents a pioneering integration of Model Predictive Control (MPC) with a Physics-Informed Neural Network (PINN), aiming to enhance control system precision and operational efficiency in AUVs. The efficacy of MPC lies in its adept handling of the intricate constraints and inherent nonlinear dynamics intrinsic to AUV systems. Concurrently, the PINN architecture incorporates the fundamental physical laws represented by Partial Differential Equations (PDEs), augmenting the predictive fidelity of the system. Firstly, this research implements the novel PINN-enhanced MPC framework for trajectory tracking and conducts a comparative evaluation against adaptive proportional-integral-derivative (PID) and Gaussian-process-based MPC controllers. This comparative analysis elucidates the advancements in control mechanisms attributable to the PINN integration. Furthermore, this study meticulously assesses the PINN-MPC's proficiency in navigating through static and dynamic obstacles within three-dimensional marine environments, a critical capability for AUV operations. Through extensive and meticulous simulations, the proposed approach demonstrates notable progress in overcoming environmental challenges and executing intricate operational tasks, such as obstacle avoidance, with heightened efficiency and dexterity. This research constitutes a substantial contribution to the theoretical advancement and elucidation of control systems in the AUV domain, bearing profound practical implications. It lays the foundation for the development of increasingly sophisticated, advanced, and reliable AUV missions, signifying a crucial advancement in the realms of underwater exploration and operational technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lu发布了新的文献求助10
3秒前
顺心成仁完成签到 ,获得积分10
16秒前
Criminology34应助科研通管家采纳,获得20
25秒前
Criminology34应助科研通管家采纳,获得10
25秒前
Criminology34应助科研通管家采纳,获得10
25秒前
lu完成签到,获得积分10
28秒前
54秒前
风月难安完成签到,获得积分10
55秒前
风月难安发布了新的文献求助10
59秒前
打打应助一事无成彭某人采纳,获得10
1分钟前
1分钟前
Sherry完成签到 ,获得积分10
1分钟前
袁青寒完成签到 ,获得积分10
1分钟前
爱航哥多久了完成签到 ,获得积分10
1分钟前
认真的幻姬完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
freya发布了新的文献求助10
2分钟前
852应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
chloe完成签到,获得积分10
2分钟前
怕触电的电源完成签到 ,获得积分10
2分钟前
浮游应助chloe采纳,获得10
2分钟前
严文强完成签到,获得积分10
2分钟前
SZU_Julian完成签到,获得积分10
3分钟前
3分钟前
3分钟前
米米完成签到,获得积分10
3分钟前
醉熏的荣轩完成签到 ,获得积分10
3分钟前
米米发布了新的文献求助10
3分钟前
靓丽的熠彤完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
iorpi完成签到,获得积分10
4分钟前
bkagyin应助一事无成彭某人采纳,获得10
4分钟前
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137259
求助须知:如何正确求助?哪些是违规求助? 4337127
关于积分的说明 13511092
捐赠科研通 4175660
什么是DOI,文献DOI怎么找? 2289571
邀请新用户注册赠送积分活动 1290099
关于科研通互助平台的介绍 1231727