Research on model predictive control of autonomous underwater vehicle based on physics informed neural network modeling

人工神经网络 模型预测控制 水下 控制(管理) 计算机科学 控制工程 工程类 人工智能 地质学 海洋学
作者
Tao Liu,Jintao Zhao,Junhao Huang,Zhenglin Li,Lingji Xu,Bo Zhao
出处
期刊:Ocean Engineering [Elsevier]
卷期号:304: 117844-117844 被引量:17
标识
DOI:10.1016/j.oceaneng.2024.117844
摘要

In the rapidly evolving field of Autonomous Underwater Vehicles (AUVs), achieving precise control remains a critical endeavor. This study presents a pioneering integration of Model Predictive Control (MPC) with a Physics-Informed Neural Network (PINN), aiming to enhance control system precision and operational efficiency in AUVs. The efficacy of MPC lies in its adept handling of the intricate constraints and inherent nonlinear dynamics intrinsic to AUV systems. Concurrently, the PINN architecture incorporates the fundamental physical laws represented by Partial Differential Equations (PDEs), augmenting the predictive fidelity of the system. Firstly, this research implements the novel PINN-enhanced MPC framework for trajectory tracking and conducts a comparative evaluation against adaptive proportional-integral-derivative (PID) and Gaussian-process-based MPC controllers. This comparative analysis elucidates the advancements in control mechanisms attributable to the PINN integration. Furthermore, this study meticulously assesses the PINN-MPC's proficiency in navigating through static and dynamic obstacles within three-dimensional marine environments, a critical capability for AUV operations. Through extensive and meticulous simulations, the proposed approach demonstrates notable progress in overcoming environmental challenges and executing intricate operational tasks, such as obstacle avoidance, with heightened efficiency and dexterity. This research constitutes a substantial contribution to the theoretical advancement and elucidation of control systems in the AUV domain, bearing profound practical implications. It lays the foundation for the development of increasingly sophisticated, advanced, and reliable AUV missions, signifying a crucial advancement in the realms of underwater exploration and operational technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由念露完成签到 ,获得积分10
刚刚
刚刚
小乐儿~完成签到,获得积分10
1秒前
香蕉觅云应助ZWY采纳,获得10
1秒前
李健的小迷弟应助22采纳,获得10
2秒前
2秒前
2秒前
qinmoming完成签到,获得积分10
3秒前
小胖饼饼发布了新的文献求助10
3秒前
3秒前
Flin发布了新的文献求助10
3秒前
4秒前
hui发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
Bond发布了新的文献求助10
6秒前
Fox完成签到 ,获得积分10
6秒前
7秒前
李小宁发布了新的文献求助10
7秒前
脑洞疼应助wen采纳,获得10
7秒前
fenghuo发布了新的文献求助10
8秒前
小胖饼饼完成签到,获得积分10
8秒前
9秒前
勤劳的白晴完成签到,获得积分10
9秒前
9秒前
霸气凡白发布了新的文献求助10
9秒前
完美世界应助喜欢朝雪采纳,获得10
9秒前
10秒前
10秒前
JianDan发布了新的文献求助10
10秒前
对手完成签到 ,获得积分10
10秒前
10秒前
10秒前
飞翔的霸天哥应助carl采纳,获得30
11秒前
frozensun应助David采纳,获得10
11秒前
Fiona000001发布了新的文献求助10
11秒前
完美世界应助闯关的KiKi采纳,获得10
12秒前
幸福的绿海完成签到,获得积分10
12秒前
顾矜应助yzy采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710