人工神经网络
模型预测控制
水下
控制(管理)
计算机科学
控制工程
工程类
人工智能
地质学
海洋学
作者
Tao Liu,Jintao Zhao,Junhao Huang,Zhenglin Li,Lingji Xu,Bo Zhao
标识
DOI:10.1016/j.oceaneng.2024.117844
摘要
In the rapidly evolving field of Autonomous Underwater Vehicles (AUVs), achieving precise control remains a critical endeavor. This study presents a pioneering integration of Model Predictive Control (MPC) with a Physics-Informed Neural Network (PINN), aiming to enhance control system precision and operational efficiency in AUVs. The efficacy of MPC lies in its adept handling of the intricate constraints and inherent nonlinear dynamics intrinsic to AUV systems. Concurrently, the PINN architecture incorporates the fundamental physical laws represented by Partial Differential Equations (PDEs), augmenting the predictive fidelity of the system. Firstly, this research implements the novel PINN-enhanced MPC framework for trajectory tracking and conducts a comparative evaluation against adaptive proportional-integral-derivative (PID) and Gaussian-process-based MPC controllers. This comparative analysis elucidates the advancements in control mechanisms attributable to the PINN integration. Furthermore, this study meticulously assesses the PINN-MPC's proficiency in navigating through static and dynamic obstacles within three-dimensional marine environments, a critical capability for AUV operations. Through extensive and meticulous simulations, the proposed approach demonstrates notable progress in overcoming environmental challenges and executing intricate operational tasks, such as obstacle avoidance, with heightened efficiency and dexterity. This research constitutes a substantial contribution to the theoretical advancement and elucidation of control systems in the AUV domain, bearing profound practical implications. It lays the foundation for the development of increasingly sophisticated, advanced, and reliable AUV missions, signifying a crucial advancement in the realms of underwater exploration and operational technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI