Research on model predictive control of autonomous underwater vehicle based on physics informed neural network modeling

人工神经网络 模型预测控制 水下 控制(管理) 计算机科学 控制工程 工程类 人工智能 地质学 海洋学
作者
Tao Liu,Jintao Zhao,Junhao Huang,Zhenglin Li,Lingji Xu,Bo Zhao
出处
期刊:Ocean Engineering [Elsevier]
卷期号:304: 117844-117844 被引量:1
标识
DOI:10.1016/j.oceaneng.2024.117844
摘要

In the rapidly evolving field of Autonomous Underwater Vehicles (AUVs), achieving precise control remains a critical endeavor. This study presents a pioneering integration of Model Predictive Control (MPC) with a Physics-Informed Neural Network (PINN), aiming to enhance control system precision and operational efficiency in AUVs. The efficacy of MPC lies in its adept handling of the intricate constraints and inherent nonlinear dynamics intrinsic to AUV systems. Concurrently, the PINN architecture incorporates the fundamental physical laws represented by Partial Differential Equations (PDEs), augmenting the predictive fidelity of the system. Firstly, this research implements the novel PINN-enhanced MPC framework for trajectory tracking and conducts a comparative evaluation against adaptive proportional-integral-derivative (PID) and Gaussian-process-based MPC controllers. This comparative analysis elucidates the advancements in control mechanisms attributable to the PINN integration. Furthermore, this study meticulously assesses the PINN-MPC's proficiency in navigating through static and dynamic obstacles within three-dimensional marine environments, a critical capability for AUV operations. Through extensive and meticulous simulations, the proposed approach demonstrates notable progress in overcoming environmental challenges and executing intricate operational tasks, such as obstacle avoidance, with heightened efficiency and dexterity. This research constitutes a substantial contribution to the theoretical advancement and elucidation of control systems in the AUV domain, bearing profound practical implications. It lays the foundation for the development of increasingly sophisticated, advanced, and reliable AUV missions, signifying a crucial advancement in the realms of underwater exploration and operational technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
头头星关注了科研通微信公众号
1秒前
笑羽完成签到,获得积分0
1秒前
2秒前
2秒前
闻元杰发布了新的文献求助10
2秒前
依侬发布了新的文献求助10
3秒前
呜呜哇哇完成签到,获得积分10
3秒前
所所应助tutu采纳,获得10
3秒前
Erislastem发布了新的文献求助10
3秒前
jiayouYi完成签到,获得积分10
4秒前
李健应助yingying采纳,获得30
4秒前
阿云完成签到 ,获得积分10
4秒前
4秒前
宋坤发布了新的文献求助10
5秒前
田様应助ruomu采纳,获得10
5秒前
5秒前
5秒前
Jolene完成签到,获得积分10
7秒前
whatever留下了新的社区评论
7秒前
简单达发布了新的文献求助10
7秒前
鲤鱼鸽子应助AYEFORBIDER采纳,获得20
7秒前
yty完成签到 ,获得积分10
7秒前
华仔应助927采纳,获得10
7秒前
老阎发布了新的文献求助20
8秒前
HEIKU应助ww采纳,获得10
8秒前
8秒前
8秒前
bodhi完成签到,获得积分10
9秒前
Huajing_Yang发布了新的文献求助10
10秒前
勤劳老虎发布了新的文献求助10
10秒前
haibara完成签到,获得积分10
10秒前
小太阳发布了新的文献求助10
10秒前
11秒前
KK完成签到,获得积分10
11秒前
Hello应助bingsu108采纳,获得10
12秒前
李健的粉丝团团长应助sss采纳,获得10
12秒前
好酒不溅完成签到 ,获得积分10
12秒前
小雯钱来发布了新的文献求助10
13秒前
宋坤完成签到,获得积分10
13秒前
oldblack完成签到,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299039
求助须知:如何正确求助?哪些是违规求助? 2934095
关于积分的说明 8466867
捐赠科研通 2607468
什么是DOI,文献DOI怎么找? 1423751
科研通“疑难数据库(出版商)”最低求助积分说明 661677
邀请新用户注册赠送积分活动 645327