Research on model predictive control of autonomous underwater vehicle based on physics informed neural network modeling

人工神经网络 模型预测控制 水下 控制(管理) 计算机科学 控制工程 工程类 人工智能 地质学 海洋学
作者
Tao Liu,Jintao Zhao,Junhao Huang,Zhenglin Li,Lingji Xu,Bo Zhao
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:304: 117844-117844 被引量:3
标识
DOI:10.1016/j.oceaneng.2024.117844
摘要

In the rapidly evolving field of Autonomous Underwater Vehicles (AUVs), achieving precise control remains a critical endeavor. This study presents a pioneering integration of Model Predictive Control (MPC) with a Physics-Informed Neural Network (PINN), aiming to enhance control system precision and operational efficiency in AUVs. The efficacy of MPC lies in its adept handling of the intricate constraints and inherent nonlinear dynamics intrinsic to AUV systems. Concurrently, the PINN architecture incorporates the fundamental physical laws represented by Partial Differential Equations (PDEs), augmenting the predictive fidelity of the system. Firstly, this research implements the novel PINN-enhanced MPC framework for trajectory tracking and conducts a comparative evaluation against adaptive proportional-integral-derivative (PID) and Gaussian-process-based MPC controllers. This comparative analysis elucidates the advancements in control mechanisms attributable to the PINN integration. Furthermore, this study meticulously assesses the PINN-MPC's proficiency in navigating through static and dynamic obstacles within three-dimensional marine environments, a critical capability for AUV operations. Through extensive and meticulous simulations, the proposed approach demonstrates notable progress in overcoming environmental challenges and executing intricate operational tasks, such as obstacle avoidance, with heightened efficiency and dexterity. This research constitutes a substantial contribution to the theoretical advancement and elucidation of control systems in the AUV domain, bearing profound practical implications. It lays the foundation for the development of increasingly sophisticated, advanced, and reliable AUV missions, signifying a crucial advancement in the realms of underwater exploration and operational technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白日兰发布了新的文献求助20
1秒前
xxww发布了新的文献求助30
1秒前
2秒前
2秒前
4秒前
虚心醉蝶完成签到 ,获得积分10
4秒前
4秒前
5秒前
爆米花应助仅仅采纳,获得10
5秒前
5秒前
12发布了新的文献求助10
5秒前
李爱国应助liuzhanyu采纳,获得10
6秒前
6秒前
何晓庆发布了新的文献求助20
7秒前
共享精神应助tty采纳,获得10
7秒前
djiwisksk66应助泥泥采纳,获得10
7秒前
vivien发布了新的文献求助10
8秒前
YQ57完成签到,获得积分10
8秒前
8秒前
YOGA完成签到,获得积分10
8秒前
dddd完成签到,获得积分10
8秒前
GGBOND发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
12秒前
13秒前
一只眠羊完成签到,获得积分10
13秒前
木木圆完成签到 ,获得积分10
14秒前
研友_Z7XY28发布了新的文献求助10
14秒前
SciGPT应助12采纳,获得10
14秒前
iNk应助过时的秋尽采纳,获得10
14秒前
gggja发布了新的文献求助30
14秒前
无花果应助张博士采纳,获得30
15秒前
xiaxianong完成签到,获得积分10
15秒前
斯文败类应助vivien采纳,获得10
15秒前
李爱国应助江峰采纳,获得10
16秒前
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993