Resource allocation in V2X communication: State-of-the-art and research challenges

计算机科学 供应 可扩展性 分布式计算 强化学习 资源配置 智能交通系统 计算机网络 人工智能 工程类 土木工程 数据库
作者
Anuja Nair,Sudeep Tanwar
出处
期刊:Physical Communication [Elsevier BV]
卷期号:64: 102351-102351 被引量:1
标识
DOI:10.1016/j.phycom.2024.102351
摘要

This paper explores the multifaceted domain of resource allocation (RA) in vehicle-to-everything (V2X) communication, emphasizing its pivotal role in advancing intelligent transportation systems (ITS) and beyond. While V2X communication stands as a cornerstone for ITS, enabling enhanced safety, efficiency, and automation in vehicular environments, it necessitates sophisticated RA strategies to address the dynamic and diverse demands of modern networks. As vehicle numbers grow, there is a rising need for more spectral resources to ensure efficient and dependable services. In areas with high vehicle concentrations, the demand for these resources intensifies to maintain swift, stable connectivity. Due to limited power, channel, and spectrum resources, their allocation is a critical challenge in V2X network. Efficient allocation of these resources is vital to prevent interference and ensure smooth communication. This study categorizes RA methods into graph-based, game theory-based, genetic algorithm-based, heuristic-based, optimization technique-based, machine learning-based, deep learning-based, and reinforcement learning-based approaches, each with its unique advantages and applicability in V2X contexts. We further delineate the evaluation metrics critical for assessing these methods, including throughput, latency, reliability, and energy efficiency, to provide a comprehensive context for comparison. Beyond ITS, the paper explores the broader implications of efficient RA in facilitating emergent V2X applications, such as emergency service provisioning, vehicle platooning, and speed harmonization. However, achieving optimal RA in V2X networks is fraught with challenges, including mobility and interference management, scalability, dynamic network topology, and the integration of heterogeneous technologies. The discussion extends to potential future directions, highlighting the importance of cross-layer design, integration of next-generation wireless technologies, and the adoption of artificial intelligence for adaptive and anticipatory resource management. By expanding the discourse beyond ITS, this paper aims to offer readers a holistic understanding of the current state, challenges, and forward-looking insights into RA for V2X communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助YLS采纳,获得10
刚刚
Binbin发布了新的文献求助10
刚刚
星辰大海应助Marjorie采纳,获得10
1秒前
1秒前
zxd完成签到,获得积分10
2秒前
亭亭1234完成签到,获得积分20
2秒前
2秒前
科研通AI5应助ccccc1998采纳,获得10
3秒前
苏苏完成签到,获得积分10
3秒前
mumu完成签到,获得积分10
3秒前
4秒前
啊撒网大大e完成签到,获得积分10
4秒前
攀攀完成签到,获得积分10
4秒前
SYLH应助书生采纳,获得10
5秒前
科研通AI5应助耄耋科研人采纳,获得10
5秒前
hufan2441完成签到,获得积分10
6秒前
MHK发布了新的文献求助10
6秒前
mmz666完成签到,获得积分10
6秒前
tpl完成签到,获得积分10
7秒前
8秒前
小郭发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
狠毒的小龙虾完成签到,获得积分10
9秒前
Hello应助tx采纳,获得10
10秒前
桐桐应助哈哈哈采纳,获得10
10秒前
10秒前
Zz完成签到 ,获得积分10
10秒前
11秒前
12秒前
可儿完成签到,获得积分10
12秒前
12秒前
12秒前
迟一风完成签到 ,获得积分10
12秒前
12秒前
李冰洋发布了新的文献求助10
12秒前
CIOOICO1发布了新的文献求助10
13秒前
13秒前
NexusExplorer应助zhangjing采纳,获得10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842155
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533896
捐赠科研通 3104642
什么是DOI,文献DOI怎么找? 1709781
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 774029