Risk prediction and analysis of gallbladder polyps with deep neural network

恶性肿瘤 胆囊 胃肠病学 腺瘤性息肉 胆囊切除术 胆囊癌 放射科 医学 普通外科 内科学 结肠镜检查 结直肠癌 癌症
作者
Kerong Yuan,Xiaofeng Zhang,Qian Yang,Xuesong Deng,Zhe Deng,Xiangyun Liao,Weixin Si
出处
期刊:Computer assisted surgery [Informa]
卷期号:29 (1)
标识
DOI:10.1080/24699322.2024.2331774
摘要

The aim of this study is to analyze the risk factors associated with the development of adenomatous and malignant polyps in the gallbladder. Adenomatous polyps of the gallbladder are considered precancerous and have a high likelihood of progressing into malignancy. Preoperatively, distinguishing between benign gallbladder polyps, adenomatous polyps, and malignant polyps is challenging. Therefore, the objective is to develop a neural network model that utilizes these risk factors to accurately predict the nature of polyps. This predictive model can be employed to differentiate the nature of polyps before surgery, enhancing diagnostic accuracy. A retrospective study was done on patients who had cholecystectomy surgeries at the Department of Hepatobiliary Surgery of the Second People's Hospital of Shenzhen between January 2017 and December 2022. The patients' clinical characteristics, lab results, and ultrasonographic indices were examined. Using risk variables for the growth of adenomatous and malignant polyps in the gallbladder, a neural network model for predicting the kind of polyps will be created. A normalized confusion matrix, PR, and ROC curve were used to evaluate the performance of the model. In this comprehensive study, we meticulously analyzed a total of 287 cases of benign gallbladder polyps, 15 cases of adenomatous polyps, and 27 cases of malignant polyps. The data analysis revealed several significant findings. Specifically, hepatitis B core antibody (95% CI −0.237 to 0.061, p < 0.001), number of polyps (95% CI −0.214 to −0.052, p = 0.001), polyp size (95% CI 0.038 to 0.051, p < 0.001), wall thickness (95% CI 0.042 to 0.081, p < 0.001), and gallbladder size (95% CI 0.185 to 0.367, p < 0.001) emerged as independent predictors for gallbladder adenomatous polyps and malignant polyps. Based on these significant findings, we developed a predictive classification model for gallbladder polyps, represented as follows, Predictive classification model for GBPs = −0.149 * core antibody − 0.033 * number of polyps + 0.045 * polyp size + 0.061 * wall thickness + 0.276 * gallbladder size − 4.313. To assess the predictive efficiency of the model, we employed precision-recall (PR) and receiver operating characteristic (ROC) curves. The area under the curve (AUC) for the prediction model was 0.945 and 0.930, respectively, indicating excellent predictive capability. We determined that a polyp size of 10 mm served as the optimal cutoff value for diagnosing gallbladder adenoma, with a sensitivity of 81.5% and specificity of 60.0%. For the diagnosis of gallbladder cancer, the sensitivity and specificity were 81.5% and 92.5%, respectively. These findings highlight the potential of our predictive model and provide valuable insights into accurate diagnosis and risk assessment for gallbladder polyps. We identified several risk factors associated with the development of adenomatous and malignant polyps in the gallbladder, including hepatitis B core antibodies, polyp number, polyp size, wall thickness, and gallbladder size. To address the need for accurate prediction, we introduced a novel neural network learning algorithm. This algorithm utilizes the aforementioned risk factors to predict the nature of gallbladder polyps. By accurately identifying the nature of these polyps, our model can assist patients in making informed decisions regarding their treatment and management strategies. This innovative approach aims to improve patient outcomes and enhance the overall effectiveness of care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
序与海完成签到,获得积分10
刚刚
yu发布了新的文献求助20
刚刚
拓跋涵易发布了新的文献求助10
刚刚
小臭屁完成签到,获得积分10
1秒前
小田完成签到 ,获得积分10
1秒前
sqrt138应助jucy采纳,获得10
1秒前
2秒前
传奇3应助ECHO采纳,获得10
2秒前
3秒前
丁一完成签到,获得积分10
3秒前
小杨完成签到 ,获得积分10
4秒前
麻辣烫发布了新的文献求助10
4秒前
Luisa完成签到,获得积分10
4秒前
abc完成签到,获得积分10
5秒前
斯文败类应助俭朴的世立采纳,获得10
5秒前
饱满的毛巾完成签到,获得积分10
5秒前
研友_n2KQ2Z完成签到,获得积分10
5秒前
可爱的函函应助陌路采纳,获得30
6秒前
7秒前
8秒前
8秒前
人文完成签到,获得积分10
8秒前
8秒前
8秒前
Akim应助等后来呢采纳,获得10
9秒前
123123完成签到 ,获得积分10
9秒前
追寻咖啡豆完成签到,获得积分10
9秒前
DrZ完成签到,获得积分10
10秒前
sara发布了新的文献求助10
11秒前
大贝完成签到,获得积分10
12秒前
13秒前
DrZ发布了新的文献求助10
13秒前
Lucas发布了新的文献求助10
13秒前
wtdai完成签到,获得积分10
14秒前
拓跋涵易完成签到,获得积分10
14秒前
14秒前
15秒前
YLL完成签到,获得积分10
15秒前
啊哈完成签到,获得积分10
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134421
求助须知:如何正确求助?哪些是违规求助? 2785363
关于积分的说明 7771655
捐赠科研通 2440968
什么是DOI,文献DOI怎么找? 1297647
科研通“疑难数据库(出版商)”最低求助积分说明 625023
版权声明 600812