非晶硅
材料科学
硅
无定形固体
化学
化学工程
纳米技术
光电子学
晶体硅
结晶学
工程类
作者
Hongchen Meng,Xiaoyuan Wu,Fa‐Jun Ma,Qingguo Zeng,Lang Zhou
标识
DOI:10.1016/j.solmat.2024.112835
摘要
Although the silicon heterojunction (SHJ) solar cell is the crystalline silicon solar cell with highest conversion efficiency at present, its higher cost of production line has been a factor restricting its industrial development. The use of hot wire chemical vapor deposition (HWCVD) technology instead of the mainstream plasma enhanced chemical vapor deposition (PECVD) technology for the deposition of amorphous silicon films can effectively reduce the cost of equipment and processing, and has a bright future. In recent years, i-a-Si:H films grown by PECVD have obtained great improvement in passivation quality, whereas HWCVD technology has been neglected in this field. This has significantly limited the development and application of HWCVD technology in SHJ cell production. In this work, we exploited the differences in the films properties and microstructures deposited by various hot-wire temperatures and successfully developed a structure for the high-passivation-quality i-a-Si:H film grown by HWCVD, consisting of a buffer layer and a double-layer bulk stack. By introducing the buffer layer grown with the 1650 °C hot-wire temperature and pure silane, the effective minority carrier lifetime was improved from 2.3 ms to 7.5 ms, and a cell efficiency enhancement of 0.4%abs was obtained. By depositing the bulk layer sequentially with hot-wire temperatures of 1800 °C and 1900 °C, the passivation quality and the conductance were both improved. An effective minority carrier lifetime of 8 ms and a further cell efficiency enhancement of 0.15%abs were obtained. Finally, SHJ solar cell efficiency of 24.35% was obtained with a home-made HWCVD-based pilot SHJ cell line.
科研通智能强力驱动
Strongly Powered by AbleSci AI