Structural optimization and growth of intrinsic hydrogenated amorphous silicon films by HWCVD

非晶硅 材料科学 无定形固体 化学 化学工程 纳米技术 光电子学 晶体硅 结晶学 工程类
作者
Hongchen Meng,Xiaoyuan Wu,Fa‐Jun Ma,Qingguo Zeng,Lang Zhou
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:271: 112835-112835
标识
DOI:10.1016/j.solmat.2024.112835
摘要

Although the silicon heterojunction (SHJ) solar cell is the crystalline silicon solar cell with highest conversion efficiency at present, its higher cost of production line has been a factor restricting its industrial development. The use of hot wire chemical vapor deposition (HWCVD) technology instead of the mainstream plasma enhanced chemical vapor deposition (PECVD) technology for the deposition of amorphous silicon films can effectively reduce the cost of equipment and processing, and has a bright future. In recent years, i-a-Si:H films grown by PECVD have obtained great improvement in passivation quality, whereas HWCVD technology has been neglected in this field. This has significantly limited the development and application of HWCVD technology in SHJ cell production. In this work, we exploited the differences in the films properties and microstructures deposited by various hot-wire temperatures and successfully developed a structure for the high-passivation-quality i-a-Si:H film grown by HWCVD, consisting of a buffer layer and a double-layer bulk stack. By introducing the buffer layer grown with the 1650 °C hot-wire temperature and pure silane, the effective minority carrier lifetime was improved from 2.3 ms to 7.5 ms, and a cell efficiency enhancement of 0.4%abs was obtained. By depositing the bulk layer sequentially with hot-wire temperatures of 1800 °C and 1900 °C, the passivation quality and the conductance were both improved. An effective minority carrier lifetime of 8 ms and a further cell efficiency enhancement of 0.15%abs were obtained. Finally, SHJ solar cell efficiency of 24.35% was obtained with a home-made HWCVD-based pilot SHJ cell line.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贺丞完成签到,获得积分10
刚刚
刚刚
2秒前
莫大发布了新的文献求助10
3秒前
SciGPT应助哦哦采纳,获得10
3秒前
现代孤晴发布了新的文献求助10
4秒前
CCC发布了新的文献求助10
4秒前
丰知然应助火星上的秋天采纳,获得10
5秒前
仓鼠小饼干完成签到 ,获得积分10
5秒前
田様应助penguin采纳,获得10
5秒前
6秒前
6秒前
christy发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
Y先生发布了新的文献求助10
7秒前
7秒前
BHI完成签到 ,获得积分10
8秒前
8秒前
Naturie完成签到,获得积分10
9秒前
慈祥的新烟完成签到,获得积分10
9秒前
大力荷花发布了新的文献求助10
10秒前
丰知然应助zhanggq123采纳,获得10
10秒前
10秒前
啦啦啦发布了新的文献求助30
11秒前
天山发布了新的文献求助10
13秒前
三黑猫应助阿柱哥采纳,获得10
14秒前
mutou发布了新的文献求助10
16秒前
abu发布了新的文献求助10
17秒前
GXJGXJ关注了科研通微信公众号
18秒前
18秒前
19秒前
LeiX完成签到,获得积分10
19秒前
20秒前
21秒前
22秒前
苏幕完成签到,获得积分10
22秒前
22秒前
22秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206929
求助须知:如何正确求助?哪些是违规求助? 2856304
关于积分的说明 8103836
捐赠科研通 2521393
什么是DOI,文献DOI怎么找? 1354579
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613277