A combined system based on data preprocessing and optimization algorithm for electricity load forecasting

预处理器 计算机科学 数据预处理 优化算法 算法 数学优化 数据挖掘 工程类 人工智能 数学 电气工程
作者
Lei Gu,Jianzhou Wang,Jingjiang Liu
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:191: 110114-110114 被引量:8
标识
DOI:10.1016/j.cie.2024.110114
摘要

Creating steady models for predicting electricity load can enhance the equilibrium between power supply and demand, a critical factor in advancing precise distribution management and optimizing economic advantages at a granular level. Electricity load forecasting is a challenging research area, and the accuracy improvement of existing single-point load forecasting models is limited by the randomness and volatility of electricity load data. As such, this research introduces a combined system. Firstly, based on the optimized Variational Mode Decomposition method, the system utilizes the Tuna Optimization Algorithm to optimize two key parameters of VMD (the penalty factor α and the number of mode decomposition K) with the objective of minimizing the envelope entropy and obtaining smoother and more stable signals. Secondly, a combination model consisting of multiple single models is proposed, and the Chef-Based Optimization Algorithm is employed to search for the combination weights that minimize the prediction errors, thereby enhancing the precision and consistency of the predictive model. To validate the superiority of the combined system, experiments are conducted using electricity load data from Queensland, Australia, with a time interval of 5 min. The numerical findings demonstrate that the system not only exhibits a substantial performance advantage over the single model in various assessment criteria like mean absolute error and root mean square error but also confirm the efficacy of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦寒凝完成签到 ,获得积分10
刚刚
99668完成签到,获得积分10
1秒前
Adzuki0812发布了新的文献求助10
1秒前
Huan发布了新的文献求助10
2秒前
luxia完成签到 ,获得积分10
5秒前
6秒前
6秒前
cozy111完成签到,获得积分10
9秒前
科研通AI6应助梦影采纳,获得10
10秒前
段启瑞完成签到,获得积分10
11秒前
11秒前
colors发布了新的文献求助10
11秒前
1111发布了新的文献求助10
12秒前
12秒前
炙热萝发布了新的文献求助10
12秒前
12秒前
科研通AI2S应助羰醛采纳,获得10
13秒前
英姑应助Lemonade采纳,获得10
14秒前
15秒前
17秒前
17秒前
科目三应助Satan采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
柠檬味de_完成签到 ,获得积分10
18秒前
18秒前
cauwindwill完成签到,获得积分10
19秒前
19秒前
JamesPei应助快乐的柚子采纳,获得10
21秒前
白日幻想家完成签到 ,获得积分10
21秒前
27完成签到 ,获得积分10
22秒前
HK发布了新的文献求助30
22秒前
JamesPei应助羰醛采纳,获得10
23秒前
无花果应助zane采纳,获得10
24秒前
平淡的懿轩完成签到,获得积分10
25秒前
26秒前
风为裳完成签到,获得积分10
29秒前
29秒前
来杯乌龙茶完成签到,获得积分10
30秒前
科研通AI6应助小鱼采纳,获得10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537662
求助须知:如何正确求助?哪些是违规求助? 4625146
关于积分的说明 14594680
捐赠科研通 4565616
什么是DOI,文献DOI怎么找? 2502535
邀请新用户注册赠送积分活动 1481073
关于科研通互助平台的介绍 1452288