Versatile and recyclable double-network PVA/cellulose hydrogels for strain sensors and triboelectric nanogenerators under harsh conditions

自愈水凝胶 材料科学 摩擦电效应 柔性电子器件 数码产品 纳米技术 复合材料 电气工程 高分子化学 工程类
作者
Yaquan Wang,Yuan Zhang,Peng Ren,Simiao Yu,Peng Cui,Christian B. Nielsen,Isaac Abrahams,Joe Briscoe,Yao Lu
出处
期刊:Nano Energy [Elsevier]
卷期号:125: 109599-109599 被引量:12
标识
DOI:10.1016/j.nanoen.2024.109599
摘要

Versatile and recyclable conductive hydrogels with long-term environmental adaptability and mechanical stability have attracted tremendous attention in wearable smart electronics. Here, double-network (DN) polyvinyl alcohol (PVA)/cellulose hydrogels were constructed after introducing a conductive rigid cellulose/Zn2+/Ca2+ network into a soft PVA/borax network. The resultant hydrogels possessed good mechanical and self-adhesive properties, along with transparency, recyclability, and remarkable resistance to freezing. They showed 30-day non-drying properties due to the presence of hygroscopic salts through a dynamic moisture adsorption and desorption process. Dehydrated hydrogels can return to their original states via self-regeneration under high relative humidity. Hydrogel-based strain sensors retained good sensitivity and a wide sensing range during the wide working temperature ranging from -40 °C to 50 °C and after recycling. Additionally, conductive hydrogels were integrated into triboelectric nanogenerators (TENGs) functioning as energy harvesters for powering electronics. TENGs retained stable electrical outputs even under harsh conditions and after recycling. Hydrogels were also assembled into flexible self-powered biomechanical sensors and tactile sensors. Thermally reversible interactions in composite hydrogels enabled their good recyclability, thereby reducing economic costs and environmental impacts caused by e-wastes. This work demonstrates the great potential of versatile and recyclable hydrogels with good environmental and mechanical stability in wearable smart electronics under harsh conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jie发布了新的文献求助10
1秒前
1秒前
tannie完成签到 ,获得积分10
3秒前
老橡树发布了新的文献求助10
4秒前
HBXAurora发布了新的文献求助50
5秒前
6秒前
冰勾板勾发布了新的文献求助10
6秒前
Jasper应助一二采纳,获得10
8秒前
medivhpanda完成签到,获得积分10
11秒前
搜集达人应助哎呀小艾哈采纳,获得10
13秒前
无花果应助研友_ZG4ml8采纳,获得10
13秒前
14秒前
KatzeBaliey发布了新的文献求助100
17秒前
阳光衣完成签到,获得积分10
17秒前
福娃选手完成签到 ,获得积分10
17秒前
传统的安青完成签到 ,获得积分10
18秒前
不配.应助Jc采纳,获得20
19秒前
一二发布了新的文献求助10
20秒前
HHH完成签到,获得积分10
20秒前
21秒前
22秒前
哈哈完成签到,获得积分10
23秒前
yyl完成签到 ,获得积分10
23秒前
24秒前
zhoujiahui发布了新的文献求助100
25秒前
26秒前
28秒前
锦瑟发布了新的文献求助10
28秒前
研友_ZG4ml8发布了新的文献求助10
28秒前
SYX发布了新的文献求助10
29秒前
forest发布了新的文献求助10
29秒前
顾矜应助一二采纳,获得10
31秒前
caltrate515发布了新的文献求助10
33秒前
独特的板凳完成签到,获得积分10
34秒前
36秒前
YYJ25完成签到,获得积分10
36秒前
WuchangI完成签到,获得积分10
38秒前
星辰大海应助SYX采纳,获得10
38秒前
淘宝叮咚完成签到,获得积分10
39秒前
脑洞疼应助费妖采纳,获得10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134969
求助须知:如何正确求助?哪些是违规求助? 2785927
关于积分的说明 7774469
捐赠科研通 2441746
什么是DOI,文献DOI怎么找? 1298163
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825