Bootstrapping Chest CT Image Understanding by Distilling Knowledge from X-ray Expert Models

自举(财务) 计算机科学 图像(数学) 人工智能 计算机图形学(图像) 医学物理学 计量经济学 医学 数学
作者
Weiwei Cao,Jianpeng Zhang,Yingda Xia,Tony C. W. Mok,Zi Li,Xianghua Ye,Le Lü,Jian Zheng,Yuxin Tang,Ling Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.04936
摘要

Radiologists highly desire fully automated versatile AI for medical imaging interpretation. However, the lack of extensively annotated large-scale multi-disease datasets has hindered the achievement of this goal. In this paper, we explore the feasibility of leveraging language as a naturally high-quality supervision for chest CT imaging. In light of the limited availability of image-report pairs, we bootstrap the understanding of 3D chest CT images by distilling chest-related diagnostic knowledge from an extensively pre-trained 2D X-ray expert model. Specifically, we propose a language-guided retrieval method to match each 3D CT image with its semantically closest 2D X-ray image, and perform pair-wise and semantic relation knowledge distillation. Subsequently, we use contrastive learning to align images and reports within the same patient while distinguishing them from the other patients. However, the challenge arises when patients have similar semantic diagnoses, such as healthy patients, potentially confusing if treated as negatives. We introduce a robust contrastive learning that identifies and corrects these false negatives. We train our model with over 12,000 pairs of chest CT images and radiology reports. Extensive experiments across multiple scenarios, including zero-shot learning, report generation, and fine-tuning processes, demonstrate the model's feasibility in interpreting chest CT images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5mg完成签到,获得积分10
1秒前
1秒前
Hello应助kekao采纳,获得10
2秒前
zhangyafei发布了新的文献求助30
2秒前
Orange应助害怕的冰颜采纳,获得10
2秒前
麦冬粑粑发布了新的文献求助10
3秒前
禾盒发布了新的文献求助30
4秒前
4秒前
4秒前
loey发布了新的文献求助10
4秒前
爆米花应助suo采纳,获得10
5秒前
chaowandou完成签到,获得积分10
5秒前
HZHZ完成签到,获得积分10
6秒前
乐乐乐悠完成签到,获得积分10
7秒前
高高雪枫应助dssouc采纳,获得30
7秒前
小白应助执着的孱采纳,获得10
7秒前
liyang999完成签到 ,获得积分10
7秒前
8秒前
潇澜完成签到,获得积分10
8秒前
诺诺完成签到 ,获得积分10
8秒前
9秒前
泽林发布了新的文献求助10
9秒前
10秒前
大个应助顿手把其采纳,获得10
11秒前
11秒前
11秒前
舒远发布了新的文献求助30
12秒前
麦冬粑粑完成签到,获得积分10
13秒前
JamesPei应助从容前行采纳,获得10
13秒前
小马甲应助zhangyafei采纳,获得10
13秒前
14秒前
14秒前
烟花应助哈喽你好采纳,获得10
15秒前
15秒前
害羞洋葱完成签到,获得积分10
15秒前
科研通AI5应助羞涩的怀蝶采纳,获得10
16秒前
洁净方盒发布了新的文献求助10
16秒前
三木子给三木子的求助进行了留言
16秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
杨震应助科研通管家采纳,获得10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732986
求助须知:如何正确求助?哪些是违规求助? 3277163
关于积分的说明 10000840
捐赠科研通 2992868
什么是DOI,文献DOI怎么找? 1642471
邀请新用户注册赠送积分活动 780435
科研通“疑难数据库(出版商)”最低求助积分说明 748816