Pixel-wise crack defect segmentation with dual-encoder fusion network

编码器 分割 解码方法 人工智能 块(置换群论) 计算机科学 计算机视觉 路径(计算) 编码(内存) 特征(语言学) 背景(考古学) 模式识别(心理学) 算法 数学 地质学 哲学 古生物学 操作系统 程序设计语言 语言学 几何学
作者
Suli Bai,Mingyang Ma,Lei Yang,Yanhong Liu
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:426: 136179-136179 被引量:8
标识
DOI:10.1016/j.conbuildmat.2024.136179
摘要

Automatic crack defect detection plays an important role in early road maintenance. However, the crack defect detection accuracy is seriously affected by some challenging factors, such as complex background, class imbalance issue, poor texture, etc. In this paper, a deep crack defect segmentation network with dual-path encoding and hierarchical fusion schemes, named DEHF-Net, is presented to accurately and effectively segment the crack defects generated in crack images. In order to capture rich feature information of crack defects, a dual-path encoder unit is built to extract the spatial information and context information from crack images simultaneously. On the basis, to strengthen the features extracted from two encoding paths, an attention fusion (AF) block and feature enhancement (FE) block are proposed for effective feature learning to achieve information complementarity of dual-branch encoding paths. Meanwhile, to alleviate the problem of semantic gaps arising from large information differences between the encoding path and decoding path, a residual refinement unit (RRU) is also introduced to enable effective refinement of edges and details. Finally, to make the segmentation results more significant on multi-scale cracks, a weighted hierarchical fusion (WHF) block is introduced in the decoding stage to fuse the shallow texture information with the deep semantic information more effectively. Experimental results show the proposed model has obtained an excellent performance comparison with advanced methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yin1489796377完成签到 ,获得积分10
1秒前
Ava应助至若春和景明采纳,获得10
1秒前
赘婿应助帅帅采纳,获得10
3秒前
3秒前
3秒前
3秒前
面包人发布了新的文献求助10
3秒前
4秒前
砥砺完成签到,获得积分10
4秒前
研友_VZG7GZ应助zuozuo采纳,获得10
5秒前
852应助DIDI采纳,获得30
5秒前
6秒前
犄角旮旯完成签到,获得积分10
6秒前
7秒前
糟糕的颜完成签到 ,获得积分10
8秒前
郭郭郭完成签到,获得积分10
8秒前
沉默的厉完成签到,获得积分20
9秒前
昜昜发布了新的文献求助10
9秒前
zzy完成签到,获得积分10
9秒前
9秒前
共享精神应助周小采纳,获得10
10秒前
犄角旮旯发布了新的文献求助10
10秒前
10秒前
淡然白山完成签到,获得积分10
11秒前
12秒前
Ava应助月本无古今采纳,获得10
12秒前
madwup发布了新的文献求助10
13秒前
13秒前
wlm发布了新的文献求助10
13秒前
13秒前
研友_VZG7GZ应助王伦采纳,获得10
14秒前
14秒前
15秒前
15秒前
董羽佳完成签到,获得积分10
15秒前
橙子发布了新的文献求助10
15秒前
ltttyy发布了新的文献求助10
16秒前
pomelo完成签到,获得积分10
16秒前
隐形曼青应助倩1采纳,获得10
16秒前
大模型应助nv42r8采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082371
求助须知:如何正确求助?哪些是违规求助? 4299730
关于积分的说明 13396998
捐赠科研通 4123608
什么是DOI,文献DOI怎么找? 2258463
邀请新用户注册赠送积分活动 1262720
关于科研通互助平台的介绍 1196681