Pixel-wise crack defect segmentation with dual-encoder fusion network

编码器 分割 解码方法 人工智能 块(置换群论) 计算机科学 计算机视觉 路径(计算) 编码(内存) 特征(语言学) 背景(考古学) 模式识别(心理学) 算法 数学 地质学 程序设计语言 几何学 古生物学 操作系统 哲学 语言学
作者
Suli Bai,Mingyang Ma,Lei Yang,Yanhong Liu
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:426: 136179-136179 被引量:8
标识
DOI:10.1016/j.conbuildmat.2024.136179
摘要

Automatic crack defect detection plays an important role in early road maintenance. However, the crack defect detection accuracy is seriously affected by some challenging factors, such as complex background, class imbalance issue, poor texture, etc. In this paper, a deep crack defect segmentation network with dual-path encoding and hierarchical fusion schemes, named DEHF-Net, is presented to accurately and effectively segment the crack defects generated in crack images. In order to capture rich feature information of crack defects, a dual-path encoder unit is built to extract the spatial information and context information from crack images simultaneously. On the basis, to strengthen the features extracted from two encoding paths, an attention fusion (AF) block and feature enhancement (FE) block are proposed for effective feature learning to achieve information complementarity of dual-branch encoding paths. Meanwhile, to alleviate the problem of semantic gaps arising from large information differences between the encoding path and decoding path, a residual refinement unit (RRU) is also introduced to enable effective refinement of edges and details. Finally, to make the segmentation results more significant on multi-scale cracks, a weighted hierarchical fusion (WHF) block is introduced in the decoding stage to fuse the shallow texture information with the deep semantic information more effectively. Experimental results show the proposed model has obtained an excellent performance comparison with advanced methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷卷完成签到,获得积分10
2秒前
时笙发布了新的文献求助10
3秒前
3秒前
pterion完成签到,获得积分10
3秒前
3秒前
5秒前
哒哒完成签到,获得积分10
7秒前
7秒前
循环发布了新的文献求助10
7秒前
幽默毛衣发布了新的文献求助10
10秒前
12秒前
循环完成签到,获得积分10
12秒前
leanne发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
开灯人和关灯人完成签到,获得积分20
15秒前
Stardust发布了新的文献求助10
16秒前
17秒前
FashionBoy应助爱笑晓曼采纳,获得10
18秒前
张雯思发布了新的文献求助10
19秒前
Priority完成签到,获得积分10
20秒前
光热效应发布了新的文献求助30
20秒前
风之星给风之星的求助进行了留言
20秒前
20秒前
ASH发布了新的文献求助10
20秒前
OxO完成签到,获得积分10
20秒前
21秒前
搜集达人应助快乐一江采纳,获得10
21秒前
22秒前
leanne完成签到,获得积分20
23秒前
幽默毛衣完成签到,获得积分10
24秒前
晨曦完成签到,获得积分10
24秒前
延文星发布了新的文献求助10
26秒前
张雯思发布了新的文献求助10
27秒前
27秒前
隐形曼青应助Stardust采纳,获得10
30秒前
30秒前
安详凡完成签到 ,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174