Comprehensive Diagnosis Strategy for Power Switch, Grid-Side Current Sensor, DC-Link Voltage Sensor Faults in Single-Phase Three-Level Rectifiers

解耦(概率) 故障指示器 控制理论(社会学) 故障检测与隔离 工程类 断层(地质) 电流传感器 电子工程 计算机科学 电压 控制工程 电气工程 执行机构 控制(管理) 人工智能 地震学 地质学
作者
Shuiqing Xu,Xiaofan Xu,Haibo Du,Hai Wang,Yi Chai,Wei Xing Zheng,Hongtian Chen
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:71 (7): 3343-3356 被引量:2
标识
DOI:10.1109/tcsi.2024.3390836
摘要

Accurate fault detection and localization are essential for single-phase three-level (SPTL) rectifier systems with high reliability requirements. However, power switch faults, grid-side current sensor (CS) faults, and DC-link voltage sensor (VS) faults can all contribute to distorted output in the rectifier system, posing challenges for existing diagnostic methods tailored for single-type faults, as they struggle to distinguish between these various faults. Therefore, this study proposes a comprehensive diagnosis technology for open-circuit (OC) faults, CS faults, and VS faults of SPTL rectifiers on the basis of a reduced-order observer. To achieve this, the method begins by expanding and transforming the state equation of the rectifier with faults, ensuring complete decoupling of the OC fault vector from the initial system states and sensor faults. Subsequently, an assessment of the initial system state, CS faults, and VS faults is achieved via the design of a reduced-order observer. Using these estimation results, fault detection variable and its adaptive thresholds is designed, along with fault-distinguishing variables to differentiate between sensor faults and OC faults. Simultaneously, sensor fault identification method and OC fault location method are introduced. Finally, the validity and resilience of the comprehensive diagnostic approach are confirmed through hardware-in-the-loop (HIL) test results under diverse scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dyh6802发布了新的文献求助10
刚刚
拉长的忆南完成签到,获得积分10
1秒前
镜哥完成签到,获得积分10
1秒前
garyaa完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
17完成签到,获得积分10
2秒前
今后应助冷静的毛豆采纳,获得20
2秒前
2秒前
小马哥36发布了新的文献求助10
2秒前
ttttttuu发布了新的文献求助10
2秒前
甜美的秋凌完成签到,获得积分10
3秒前
10发布了新的文献求助10
4秒前
高高完成签到 ,获得积分10
4秒前
AAAAAAAAAAA发布了新的文献求助10
4秒前
5秒前
wxaaaa完成签到,获得积分10
5秒前
李爱国应助dd采纳,获得10
6秒前
7秒前
Jasper应助感性的凉面采纳,获得10
8秒前
8秒前
9秒前
9秒前
10秒前
情怀应助顺顺采纳,获得10
10秒前
garyaa发布了新的文献求助10
10秒前
10秒前
NexusExplorer应助奔奔采纳,获得10
10秒前
Orange应助Clean采纳,获得10
11秒前
Lucas应助ww采纳,获得10
11秒前
12秒前
ttttttuu完成签到,获得积分10
12秒前
13秒前
刘涵完成签到 ,获得积分10
13秒前
小马甲应助zhui采纳,获得10
13秒前
10完成签到,获得积分10
13秒前
13秒前
13秒前
Rainielove0215完成签到,获得积分0
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794