VENet: Variational energy network for gland segmentation of pathological images and early gastric cancer diagnosis of whole slide images

分割 人工智能 病态的 癌症 计算机科学 计算机视觉 能量(信号处理) 图像分割 医学 放射科 模式识别(心理学) 病理 数学 内科学 统计
作者
Shuchang Zhang,Ziyang Yuan,Xianchen Zhou,Hongxia Wang,Bo Chen,Yadong Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:250: 108178-108178 被引量:2
标识
DOI:10.1016/j.cmpb.2024.108178
摘要

Background and objective: Gland segmentation of pathological images is an essential but challenging step for adenocarcinoma diagnosis. Although deep learning methods have recently made tremendous progress in gland segmentation, they have not given satisfactory boundary and region segmentation results of adjacent glands. These glands usually have a large difference in glandular appearance, and the statistical distribution between the training and test sets in deep learning is inconsistent. These problems make networks not generalize well in the test dataset, bringing difficulties to gland segmentation and early cancer diagnosis. Methods: To address these problems, we propose a Variational Energy Network named VENet with a traditional variational energy Lv loss for gland segmentation of pathological images and early gastric cancer detection in whole slide images (WSIs). It effectively integrates the variational mathematical model and the data-adaptability of deep learning methods to balance boundary and region segmentation. Furthermore, it can effectively segment and classify glands in large-size WSIs with reliable nucleus width and nucleus-to-cytoplasm ratio features. Results: The VENet was evaluated on the 2015 MICCAI Gland Segmentation challenge (GlaS) dataset, the Colorectal Adenocarcinoma Glands (CRAG) dataset, and the self-collected Nanfang Hospital dataset. Compared with state-of-the-art methods, our method achieved excellent performance for GlaS Test A (object dice 0.9562, object F1 0.9271, object Hausdorff distance 73.13), GlaS Test B (object dice 94.95, object F1 95.60, object Hausdorff distance 59.63), and CRAG (object dice 95.08, object F1 92.94, object Hausdorff distance 28.01). For the Nanfang Hospital dataset, our method achieved a kappa of 0.78, an accuracy of 0.9, a sensitivity of 0.98, and a specificity of 0.80 on the classification task of test 69 WSIs. Conclusions: The experimental results show that the proposed model accurately predicts boundaries and outperforms state-of-the-art methods. It can be applied to the early diagnosis of gastric cancer by detecting regions of high-grade gastric intraepithelial neoplasia in WSI, which can assist pathologists in analyzing large WSI and making accurate diagnostic decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助蓝鲸采纳,获得10
刚刚
思源应助蓝鲸采纳,获得10
刚刚
科研通AI6应助蓝鲸采纳,获得10
刚刚
今后应助蓝鲸采纳,获得10
刚刚
华仔应助cqh采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
lve发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
Hui_2023发布了新的文献求助10
3秒前
hhh完成签到,获得积分10
3秒前
3秒前
4秒前
mmgf发布了新的文献求助10
4秒前
Ava应助覃小冬采纳,获得10
4秒前
斯文败类应助鹿芗泽采纳,获得30
4秒前
zz关闭了zz文献求助
4秒前
安安发布了新的文献求助10
4秒前
rrrrrrry发布了新的文献求助10
5秒前
千島雪穂发布了新的文献求助10
6秒前
顾矜应助欢呼的灰狼采纳,获得10
6秒前
包容仙人掌完成签到,获得积分10
6秒前
小马甲应助hj采纳,获得10
7秒前
我是老大应助映城采纳,获得50
7秒前
7秒前
8秒前
9秒前
研友_VZG7GZ应助玄一采纳,获得10
10秒前
11秒前
12秒前
12秒前
12秒前
12秒前
13秒前
myx完成签到 ,获得积分10
14秒前
早八混子完成签到,获得积分10
14秒前
111发布了新的文献求助10
15秒前
明芬发布了新的文献求助10
15秒前
qq完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594565
求助须知:如何正确求助?哪些是违规求助? 4680238
关于积分的说明 14813737
捐赠科研通 4647610
什么是DOI,文献DOI怎么找? 2535063
邀请新用户注册赠送积分活动 1503074
关于科研通互助平台的介绍 1469521