VENet: Variational energy network for gland segmentation of pathological images and early gastric cancer diagnosis of whole slide images

分割 人工智能 病态的 癌症 计算机科学 计算机视觉 能量(信号处理) 图像分割 医学 放射科 模式识别(心理学) 病理 数学 内科学 统计
作者
Shuchang Zhang,Ziyang Yuan,Xianchen Zhou,Hongxia Wang,Bo Chen,Yadong Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:250: 108178-108178 被引量:2
标识
DOI:10.1016/j.cmpb.2024.108178
摘要

Background and objective: Gland segmentation of pathological images is an essential but challenging step for adenocarcinoma diagnosis. Although deep learning methods have recently made tremendous progress in gland segmentation, they have not given satisfactory boundary and region segmentation results of adjacent glands. These glands usually have a large difference in glandular appearance, and the statistical distribution between the training and test sets in deep learning is inconsistent. These problems make networks not generalize well in the test dataset, bringing difficulties to gland segmentation and early cancer diagnosis. Methods: To address these problems, we propose a Variational Energy Network named VENet with a traditional variational energy Lv loss for gland segmentation of pathological images and early gastric cancer detection in whole slide images (WSIs). It effectively integrates the variational mathematical model and the data-adaptability of deep learning methods to balance boundary and region segmentation. Furthermore, it can effectively segment and classify glands in large-size WSIs with reliable nucleus width and nucleus-to-cytoplasm ratio features. Results: The VENet was evaluated on the 2015 MICCAI Gland Segmentation challenge (GlaS) dataset, the Colorectal Adenocarcinoma Glands (CRAG) dataset, and the self-collected Nanfang Hospital dataset. Compared with state-of-the-art methods, our method achieved excellent performance for GlaS Test A (object dice 0.9562, object F1 0.9271, object Hausdorff distance 73.13), GlaS Test B (object dice 94.95, object F1 95.60, object Hausdorff distance 59.63), and CRAG (object dice 95.08, object F1 92.94, object Hausdorff distance 28.01). For the Nanfang Hospital dataset, our method achieved a kappa of 0.78, an accuracy of 0.9, a sensitivity of 0.98, and a specificity of 0.80 on the classification task of test 69 WSIs. Conclusions: The experimental results show that the proposed model accurately predicts boundaries and outperforms state-of-the-art methods. It can be applied to the early diagnosis of gastric cancer by detecting regions of high-grade gastric intraepithelial neoplasia in WSI, which can assist pathologists in analyzing large WSI and making accurate diagnostic decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助腼腆的豆芽采纳,获得10
1秒前
玉佩发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
今后应助wkc采纳,获得10
2秒前
Dprisk完成签到,获得积分10
3秒前
JJ发布了新的文献求助10
3秒前
丘比特应助阿仔采纳,获得10
3秒前
安溢发布了新的文献求助10
5秒前
5秒前
Dprisk发布了新的文献求助30
6秒前
Babe1934完成签到,获得积分20
7秒前
JJ发布了新的文献求助10
7秒前
JJ发布了新的文献求助10
7秒前
JJ发布了新的文献求助10
7秒前
JJ发布了新的文献求助10
7秒前
JJ发布了新的文献求助10
8秒前
navy发布了新的文献求助10
8秒前
zh完成签到 ,获得积分20
8秒前
Rainsky完成签到,获得积分10
8秒前
汉堡包应助zc采纳,获得10
9秒前
Au完成签到,获得积分10
9秒前
9秒前
zorrial发布了新的文献求助10
9秒前
隐形曼青应助自觉含莲采纳,获得10
10秒前
量子星尘发布了新的文献求助100
11秒前
11秒前
minute完成签到,获得积分20
13秒前
ding应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得30
13秒前
天天快乐应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898874
求助须知:如何正确求助?哪些是违规求助? 4179426
关于积分的说明 12974964
捐赠科研通 3943420
什么是DOI,文献DOI怎么找? 2163330
邀请新用户注册赠送积分活动 1181673
关于科研通互助平台的介绍 1087325