VENet: Variational energy network for gland segmentation of pathological images and early gastric cancer diagnosis of whole slide images

分割 人工智能 病态的 癌症 计算机科学 计算机视觉 能量(信号处理) 图像分割 医学 放射科 模式识别(心理学) 病理 数学 内科学 统计
作者
Shuchang Zhang,Ziyang Yuan,Xianchen Zhou,Hongxia Wang,Bo Chen,Yadong Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:250: 108178-108178 被引量:2
标识
DOI:10.1016/j.cmpb.2024.108178
摘要

Background and objective: Gland segmentation of pathological images is an essential but challenging step for adenocarcinoma diagnosis. Although deep learning methods have recently made tremendous progress in gland segmentation, they have not given satisfactory boundary and region segmentation results of adjacent glands. These glands usually have a large difference in glandular appearance, and the statistical distribution between the training and test sets in deep learning is inconsistent. These problems make networks not generalize well in the test dataset, bringing difficulties to gland segmentation and early cancer diagnosis. Methods: To address these problems, we propose a Variational Energy Network named VENet with a traditional variational energy Lv loss for gland segmentation of pathological images and early gastric cancer detection in whole slide images (WSIs). It effectively integrates the variational mathematical model and the data-adaptability of deep learning methods to balance boundary and region segmentation. Furthermore, it can effectively segment and classify glands in large-size WSIs with reliable nucleus width and nucleus-to-cytoplasm ratio features. Results: The VENet was evaluated on the 2015 MICCAI Gland Segmentation challenge (GlaS) dataset, the Colorectal Adenocarcinoma Glands (CRAG) dataset, and the self-collected Nanfang Hospital dataset. Compared with state-of-the-art methods, our method achieved excellent performance for GlaS Test A (object dice 0.9562, object F1 0.9271, object Hausdorff distance 73.13), GlaS Test B (object dice 94.95, object F1 95.60, object Hausdorff distance 59.63), and CRAG (object dice 95.08, object F1 92.94, object Hausdorff distance 28.01). For the Nanfang Hospital dataset, our method achieved a kappa of 0.78, an accuracy of 0.9, a sensitivity of 0.98, and a specificity of 0.80 on the classification task of test 69 WSIs. Conclusions: The experimental results show that the proposed model accurately predicts boundaries and outperforms state-of-the-art methods. It can be applied to the early diagnosis of gastric cancer by detecting regions of high-grade gastric intraepithelial neoplasia in WSI, which can assist pathologists in analyzing large WSI and making accurate diagnostic decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷的冰真应助kksun采纳,获得10
刚刚
贲半梦发布了新的文献求助10
1秒前
confident发布了新的文献求助30
1秒前
vidi发布了新的文献求助10
2秒前
隐形曼青应助yysghr采纳,获得10
2秒前
2秒前
汉堡包应助郭璐源采纳,获得10
3秒前
冰露发布了新的文献求助10
3秒前
zdh完成签到,获得积分10
4秒前
善学以致用应助YiXianCoA采纳,获得30
4秒前
4秒前
看着你完成签到,获得积分10
5秒前
小二郎应助midokaori采纳,获得10
5秒前
61forsci完成签到,获得积分10
5秒前
5秒前
YH发布了新的文献求助10
5秒前
真实的一鸣完成签到,获得积分10
6秒前
lilililili发布了新的文献求助10
6秒前
gengfu完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
研友_VZG7GZ应助nuo采纳,获得10
8秒前
8秒前
Jasper应助逃离大西北采纳,获得10
9秒前
9秒前
爆米花应助linkman采纳,获得10
9秒前
赘婿应助linkman采纳,获得10
9秒前
May应助谢昱采纳,获得20
9秒前
wisdom应助linkman采纳,获得10
9秒前
共享精神应助linkman采纳,获得10
9秒前
0美团外卖0完成签到,获得积分20
10秒前
隐形曼青应助大方向真采纳,获得10
11秒前
11秒前
goo完成签到,获得积分20
11秒前
wisdom应助看着你采纳,获得10
12秒前
yan完成签到,获得积分10
12秒前
Sky发布了新的文献求助10
12秒前
biangbiangmian关注了科研通微信公众号
13秒前
echo发布了新的文献求助10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961408
求助须知:如何正确求助?哪些是违规求助? 3507744
关于积分的说明 11137921
捐赠科研通 3240204
什么是DOI,文献DOI怎么找? 1790848
邀请新用户注册赠送积分活动 872587
科研通“疑难数据库(出版商)”最低求助积分说明 803288