VENet: Variational energy network for gland segmentation of pathological images and early gastric cancer diagnosis of whole slide images

分割 人工智能 病态的 癌症 计算机科学 计算机视觉 能量(信号处理) 图像分割 医学 放射科 模式识别(心理学) 病理 数学 内科学 统计
作者
Shuchang Zhang,Ziyang Yuan,Xianchen Zhou,Hongxia Wang,Bo Chen,Yadong Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:250: 108178-108178 被引量:2
标识
DOI:10.1016/j.cmpb.2024.108178
摘要

Background and objective: Gland segmentation of pathological images is an essential but challenging step for adenocarcinoma diagnosis. Although deep learning methods have recently made tremendous progress in gland segmentation, they have not given satisfactory boundary and region segmentation results of adjacent glands. These glands usually have a large difference in glandular appearance, and the statistical distribution between the training and test sets in deep learning is inconsistent. These problems make networks not generalize well in the test dataset, bringing difficulties to gland segmentation and early cancer diagnosis. Methods: To address these problems, we propose a Variational Energy Network named VENet with a traditional variational energy Lv loss for gland segmentation of pathological images and early gastric cancer detection in whole slide images (WSIs). It effectively integrates the variational mathematical model and the data-adaptability of deep learning methods to balance boundary and region segmentation. Furthermore, it can effectively segment and classify glands in large-size WSIs with reliable nucleus width and nucleus-to-cytoplasm ratio features. Results: The VENet was evaluated on the 2015 MICCAI Gland Segmentation challenge (GlaS) dataset, the Colorectal Adenocarcinoma Glands (CRAG) dataset, and the self-collected Nanfang Hospital dataset. Compared with state-of-the-art methods, our method achieved excellent performance for GlaS Test A (object dice 0.9562, object F1 0.9271, object Hausdorff distance 73.13), GlaS Test B (object dice 94.95, object F1 95.60, object Hausdorff distance 59.63), and CRAG (object dice 95.08, object F1 92.94, object Hausdorff distance 28.01). For the Nanfang Hospital dataset, our method achieved a kappa of 0.78, an accuracy of 0.9, a sensitivity of 0.98, and a specificity of 0.80 on the classification task of test 69 WSIs. Conclusions: The experimental results show that the proposed model accurately predicts boundaries and outperforms state-of-the-art methods. It can be applied to the early diagnosis of gastric cancer by detecting regions of high-grade gastric intraepithelial neoplasia in WSI, which can assist pathologists in analyzing large WSI and making accurate diagnostic decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助木木夕云采纳,获得10
刚刚
科研通AI6应助明月清风采纳,获得30
1秒前
浮游应助wuzhi采纳,获得10
1秒前
1秒前
Brrr发布了新的文献求助10
1秒前
3秒前
5秒前
无情元菱完成签到 ,获得积分10
8秒前
fsznc1完成签到 ,获得积分0
8秒前
8秒前
噫吁嚱发布了新的文献求助10
10秒前
xing发布了新的文献求助10
10秒前
13秒前
14秒前
16秒前
17秒前
所所应助shelly采纳,获得10
17秒前
20秒前
传奇3应助王大白采纳,获得10
20秒前
21秒前
JamesPei应助linXY采纳,获得10
21秒前
在水一方应助洛洛采纳,获得10
21秒前
自觉的凡梦完成签到 ,获得积分10
22秒前
hull发布了新的文献求助10
22秒前
搜集达人应助贾霆采纳,获得10
22秒前
23秒前
酷波er应助清爽难敌采纳,获得10
23秒前
Jiangzhibing发布了新的文献求助10
25秒前
25秒前
JamesPei应助小王同学采纳,获得10
26秒前
26秒前
27秒前
wop111应助科研通管家采纳,获得30
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
现代晓绿应助科研通管家采纳,获得10
27秒前
27秒前
汉堡包应助科研通管家采纳,获得10
27秒前
天天快乐应助科研通管家采纳,获得10
28秒前
现代晓绿应助科研通管家采纳,获得10
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125754
求助须知:如何正确求助?哪些是违规求助? 4329444
关于积分的说明 13491137
捐赠科研通 4164408
什么是DOI,文献DOI怎么找? 2282909
邀请新用户注册赠送积分活动 1283936
关于科研通互助平台的介绍 1223344