A Neural Network Modeling Method With Low-Rate Sampling for Wide Temperature Range SiC MOSFETs Application

航程(航空) 人工神经网络 材料科学 大气温度范围 采样(信号处理) 电子工程 光电子学 工程物理 计算机科学 人工智能 工程类 物理 热力学 电信 复合材料 探测器
作者
Wenhao Yang,Mengnan Qi,Yuyin Sun,Shasha Mao,Lei Yuan,Yimeng Zhang,Yuming Zhang
出处
期刊:IEEE Transactions on Electron Devices [Institute of Electrical and Electronics Engineers]
卷期号:71 (6): 3510-3517
标识
DOI:10.1109/ted.2024.3389628
摘要

With the rapid development of semiconductor technology, conventional modeling based on physical equations encounters challenges related to accuracy and development time. The study proposes a behavioral-level modeling approach based on artificial neural networks (ANNs), aiming to swiftly and accurately model SiC MOSFETs when used in CMOS integrated circuits over a wide temperature range. Nevertheless, achieving precise ANN model training typically demands a substantial volume of data, incurring costs related to measurements and lengthy training periods. To address this issue, sampling-based methods for acquiring training data play a crucial role, but they come with a notable limitation. Lower sampling rates result in a considerable reduction in model accuracy, whereas higher sampling rates fail to effectively tackle the time-consuming issue and the associated costs of model training. To train the ANN model with less data without compromising accuracy, this study uses the uniform random sampling (URS) method and the Latin hypercube sampling (LHS) method based on stratified sampling during the training set acquisition process. The results demonstrate that LHS significantly outperforms URS in terms of accuracy at the same sampling rate of 2%. For further enhancement of fitting accuracy in the transition region, a segmented LHS (SLHS) method is proposed, showcasing superior modeling capability. The ANN model constructed using this sampling method enhances fitting accuracy in the transition region between linear and saturation regions by 38.6% and overall fitting accuracy by 17.3%, when compared with LHS method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sansronds完成签到,获得积分10
刚刚
Lze发布了新的文献求助20
刚刚
天涯发布了新的文献求助10
1秒前
奋斗的苹果完成签到,获得积分10
1秒前
大花花完成签到,获得积分10
1秒前
脑洞疼应助呆萌幼晴采纳,获得10
1秒前
1秒前
刘辞忧完成签到 ,获得积分10
1秒前
SATone完成签到,获得积分10
2秒前
2秒前
呼呼完成签到,获得积分10
2秒前
2秒前
Coarrb完成签到,获得积分10
2秒前
ylf发布了新的文献求助10
3秒前
胡小溪完成签到,获得积分10
3秒前
温暖的冬天完成签到,获得积分10
3秒前
从容雅柏完成签到,获得积分10
3秒前
JamesPei应助Lihuining采纳,获得10
3秒前
zy关注了科研通微信公众号
3秒前
大盘菜应助灯座采纳,获得10
4秒前
毅可爱完成签到,获得积分10
4秒前
充电宝应助灯座采纳,获得10
4秒前
无颜猪发布了新的文献求助10
4秒前
桐桐应助guochenggong采纳,获得10
5秒前
时冬冬应助虚心的静枫采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
怡然花卷完成签到,获得积分20
6秒前
老lili完成签到,获得积分10
6秒前
笑笑丶不爱笑完成签到,获得积分10
7秒前
7秒前
大本完成签到,获得积分10
8秒前
ylf完成签到,获得积分10
8秒前
8秒前
Oil完成签到,获得积分10
8秒前
8秒前
张姣姣完成签到,获得积分10
9秒前
xiyueQAQ完成签到,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017