A Neural Network Modeling Method With Low-Rate Sampling for Wide Temperature Range SiC MOSFETs Application

航程(航空) 人工神经网络 材料科学 大气温度范围 采样(信号处理) 电子工程 光电子学 工程物理 计算机科学 人工智能 工程类 物理 热力学 电信 复合材料 探测器
作者
Wenhao Yang,Mengnan Qi,Yuyin Sun,Shasha Mao,Lei Yuan,Yimeng Zhang,Yuming Zhang
出处
期刊:IEEE Transactions on Electron Devices [Institute of Electrical and Electronics Engineers]
卷期号:71 (6): 3510-3517
标识
DOI:10.1109/ted.2024.3389628
摘要

With the rapid development of semiconductor technology, conventional modeling based on physical equations encounters challenges related to accuracy and development time. The study proposes a behavioral-level modeling approach based on artificial neural networks (ANNs), aiming to swiftly and accurately model SiC MOSFETs when used in CMOS integrated circuits over a wide temperature range. Nevertheless, achieving precise ANN model training typically demands a substantial volume of data, incurring costs related to measurements and lengthy training periods. To address this issue, sampling-based methods for acquiring training data play a crucial role, but they come with a notable limitation. Lower sampling rates result in a considerable reduction in model accuracy, whereas higher sampling rates fail to effectively tackle the time-consuming issue and the associated costs of model training. To train the ANN model with less data without compromising accuracy, this study uses the uniform random sampling (URS) method and the Latin hypercube sampling (LHS) method based on stratified sampling during the training set acquisition process. The results demonstrate that LHS significantly outperforms URS in terms of accuracy at the same sampling rate of 2%. For further enhancement of fitting accuracy in the transition region, a segmented LHS (SLHS) method is proposed, showcasing superior modeling capability. The ANN model constructed using this sampling method enhances fitting accuracy in the transition region between linear and saturation regions by 38.6% and overall fitting accuracy by 17.3%, when compared with LHS method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光头哥发布了新的文献求助10
1秒前
LY发布了新的文献求助10
1秒前
Criminology34应助kingwill采纳,获得20
1秒前
he完成签到,获得积分10
3秒前
wlz完成签到,获得积分10
3秒前
小卷粉完成签到 ,获得积分10
4秒前
TTT完成签到,获得积分10
5秒前
5秒前
Su发布了新的文献求助10
5秒前
5秒前
6秒前
zho应助LY采纳,获得10
6秒前
8秒前
英俊的铭应助炮仗采纳,获得10
10秒前
大吃一筐馒头完成签到,获得积分10
10秒前
11秒前
Xinya发布了新的文献求助10
11秒前
12秒前
椰子发布了新的文献求助10
12秒前
12秒前
Owen应助ikun666采纳,获得10
13秒前
龙腾虎跃完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
17秒前
letter关注了科研通微信公众号
18秒前
18秒前
Xinya完成签到,获得积分10
19秒前
科研通AI6应助ginaaaaa采纳,获得10
19秒前
闪闪穆发布了新的文献求助10
21秒前
22秒前
聪慧的从丹完成签到 ,获得积分10
23秒前
英俊的铭应助俭朴灵竹采纳,获得30
24秒前
冷艳念真完成签到,获得积分10
24秒前
26秒前
26秒前
ikun666发布了新的文献求助10
27秒前
27秒前
温暖如风完成签到,获得积分10
28秒前
29秒前
Criminology34应助kingwill采纳,获得20
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598801
求助须知:如何正确求助?哪些是违规求助? 4684195
关于积分的说明 14834179
捐赠科研通 4664847
什么是DOI,文献DOI怎么找? 2537406
邀请新用户注册赠送积分活动 1504909
关于科研通互助平台的介绍 1470655