A Neural Network Modeling Method With Low-Rate Sampling for Wide Temperature Range SiC MOSFETs Application

航程(航空) 人工神经网络 材料科学 大气温度范围 采样(信号处理) 电子工程 光电子学 工程物理 计算机科学 人工智能 工程类 物理 热力学 电信 复合材料 探测器
作者
Wenhao Yang,Mengnan Qi,Yuyin Sun,Shasha Mao,Lei Yuan,Yimeng Zhang,Yuming Zhang
出处
期刊:IEEE Transactions on Electron Devices [Institute of Electrical and Electronics Engineers]
卷期号:71 (6): 3510-3517
标识
DOI:10.1109/ted.2024.3389628
摘要

With the rapid development of semiconductor technology, conventional modeling based on physical equations encounters challenges related to accuracy and development time. The study proposes a behavioral-level modeling approach based on artificial neural networks (ANNs), aiming to swiftly and accurately model SiC MOSFETs when used in CMOS integrated circuits over a wide temperature range. Nevertheless, achieving precise ANN model training typically demands a substantial volume of data, incurring costs related to measurements and lengthy training periods. To address this issue, sampling-based methods for acquiring training data play a crucial role, but they come with a notable limitation. Lower sampling rates result in a considerable reduction in model accuracy, whereas higher sampling rates fail to effectively tackle the time-consuming issue and the associated costs of model training. To train the ANN model with less data without compromising accuracy, this study uses the uniform random sampling (URS) method and the Latin hypercube sampling (LHS) method based on stratified sampling during the training set acquisition process. The results demonstrate that LHS significantly outperforms URS in terms of accuracy at the same sampling rate of 2%. For further enhancement of fitting accuracy in the transition region, a segmented LHS (SLHS) method is proposed, showcasing superior modeling capability. The ANN model constructed using this sampling method enhances fitting accuracy in the transition region between linear and saturation regions by 38.6% and overall fitting accuracy by 17.3%, when compared with LHS method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
WTT完成签到 ,获得积分10
刚刚
刚刚
刚刚
刚刚
Emma完成签到,获得积分10
1秒前
Hh完成签到,获得积分10
2秒前
梧桐树完成签到,获得积分10
2秒前
典雅的思菱完成签到,获得积分10
2秒前
2秒前
成就的沛菡完成签到 ,获得积分10
2秒前
ysf完成签到,获得积分10
2秒前
doubleshake发布了新的文献求助10
2秒前
鱿鱼完成签到,获得积分10
3秒前
3秒前
KingWong发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
卢卢完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
weiteman完成签到,获得积分10
5秒前
宸5931发布了新的文献求助10
5秒前
7秒前
7秒前
还能不能学会了完成签到,获得积分10
8秒前
浪而而完成签到,获得积分10
8秒前
SHUANG发布了新的文献求助10
8秒前
淡然的含卉应助一期一会采纳,获得10
8秒前
9秒前
飞翔的荷兰人完成签到,获得积分10
9秒前
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646