A Neural Network Modeling Method With Low-Rate Sampling for Wide Temperature Range SiC MOSFETs Application

航程(航空) 人工神经网络 材料科学 大气温度范围 采样(信号处理) 电子工程 光电子学 工程物理 计算机科学 人工智能 工程类 物理 热力学 电信 复合材料 探测器
作者
Wenhao Yang,Mengnan Qi,Yuyin Sun,Shasha Mao,Lei Yuan,Yimeng Zhang,Yuming Zhang
出处
期刊:IEEE Transactions on Electron Devices [Institute of Electrical and Electronics Engineers]
卷期号:71 (6): 3510-3517
标识
DOI:10.1109/ted.2024.3389628
摘要

With the rapid development of semiconductor technology, conventional modeling based on physical equations encounters challenges related to accuracy and development time. The study proposes a behavioral-level modeling approach based on artificial neural networks (ANNs), aiming to swiftly and accurately model SiC MOSFETs when used in CMOS integrated circuits over a wide temperature range. Nevertheless, achieving precise ANN model training typically demands a substantial volume of data, incurring costs related to measurements and lengthy training periods. To address this issue, sampling-based methods for acquiring training data play a crucial role, but they come with a notable limitation. Lower sampling rates result in a considerable reduction in model accuracy, whereas higher sampling rates fail to effectively tackle the time-consuming issue and the associated costs of model training. To train the ANN model with less data without compromising accuracy, this study uses the uniform random sampling (URS) method and the Latin hypercube sampling (LHS) method based on stratified sampling during the training set acquisition process. The results demonstrate that LHS significantly outperforms URS in terms of accuracy at the same sampling rate of 2%. For further enhancement of fitting accuracy in the transition region, a segmented LHS (SLHS) method is proposed, showcasing superior modeling capability. The ANN model constructed using this sampling method enhances fitting accuracy in the transition region between linear and saturation regions by 38.6% and overall fitting accuracy by 17.3%, when compared with LHS method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
地平完成签到,获得积分10
刚刚
1秒前
英俊的二娘完成签到,获得积分10
1秒前
饱满芷卉发布了新的文献求助10
1秒前
曲聋五完成签到 ,获得积分10
1秒前
daodao完成签到,获得积分10
1秒前
2秒前
华仔应助醉熏的小伙采纳,获得10
3秒前
雾醉舟完成签到,获得积分10
3秒前
3秒前
耶卷完成签到 ,获得积分10
3秒前
橘子味的橙子完成签到,获得积分10
3秒前
巴拉拉发布了新的文献求助10
3秒前
sunshine完成签到,获得积分10
4秒前
sqf1209完成签到,获得积分10
5秒前
5秒前
sunryaes完成签到 ,获得积分10
5秒前
星辰发布了新的文献求助10
6秒前
daodao发布了新的文献求助10
6秒前
lty完成签到,获得积分10
6秒前
小欣发布了新的文献求助10
6秒前
7秒前
superchili完成签到,获得积分10
7秒前
7秒前
Sereno发布了新的文献求助10
7秒前
Ling发布了新的文献求助10
7秒前
DRHCE完成签到,获得积分10
7秒前
remake441完成签到,获得积分20
7秒前
7秒前
爆米花应助小鱼采纳,获得10
7秒前
Neuro_dan完成签到,获得积分0
8秒前
DduYy完成签到,获得积分10
8秒前
平凡之路完成签到,获得积分10
9秒前
9秒前
带派不老铁完成签到 ,获得积分10
10秒前
remake441发布了新的文献求助10
11秒前
美好的碧萱完成签到,获得积分10
11秒前
寻菡完成签到,获得积分10
11秒前
orixero应助酷酷忆安采纳,获得20
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545599
求助须知:如何正确求助?哪些是违规求助? 4631588
关于积分的说明 14621327
捐赠科研通 4573203
什么是DOI,文献DOI怎么找? 2507433
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455416